Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Signal amplification strategies for clinical biomarker quantification using elemental mass spectrometry.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 101134327 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1618-2650 (Electronic) Linking ISSN: 16182642 NLM ISO Abbreviation: Anal Bioanal Chem Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Heidelberg : Springer-Verlag, 2002-
    • الموضوع:
    • نبذة مختصرة :
      The current trends in modern medicine towards early diagnosis, or even prognosis, of different diseases have brought about the need for the corresponding biomarker detection at ever lower levels in really complex matrices. To do so, it is necessary to use proper extremely sensitive detection techniques such as elemental mass spectrometry. However, target labelling with metals for subsequent sensitive ICP-MS detection falls short nowadays even if resorting to inorganic nanoparticles containing a high number of detectable elements. Thus, new amplification strategies are being proposed to face this analytical challenge that will be critically discussed in this paper. Fundamentals of different novel strategies developed to achieve signal amplification and sensitive elemental mass spectrometry detection are here discussed. Some representative examples of relevant clinical applications are highlighted, along with future prospects and challenges.
      (© 2021. Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Sobsey CA, Ibrahim S, Richard VR, Gaspar V, Mitsa G, Lacasse V, et al. Targeted and untargeted proteomics approaches in biomarker development. Proteomics. 2020;20(9):1900029. https://doi.org/10.1002/pmic.201900029 . (PMID: 10.1002/pmic.201900029)
      Calderón-Celis F, Encinar JR, Sanz-Medel A. Standardization approaches in absolute quantitative proteomics with mass spectrometry. Mass Spectrom Rev. 2018;37(6):715–37. https://doi.org/10.1002/mas.21542 . (PMID: 10.1002/mas.2154228758227)
      Cid-Barrio L, Calderón-Celis F, Costa-Fernández JM, Encinar JR. Assessment of the potential and limitations of elemental mass spectrometry in life sciences for absolute quantification of biomolecules using generic standards. Anal Chem. 2020;92(19):13500–8. https://doi.org/10.1021/acs.analchem.0c02942 . (PMID: 10.1021/acs.analchem.0c0294232842726)
      Sanz-Medel A. ICP-MS for multiplex absolute determinations of proteins. Anal Bioanal Chem. 2010;398(5):1853–9. https://doi.org/10.1007/s00216-010-4091-z . (PMID: 10.1007/s00216-010-4091-z20711768)
      Cid-Barrio L, Calderón-Celis F, Abásolo-Linares P, Fernández-Sánchez ML, Costa-Fernández JM, Encinar JR, et al. Advances in absolute protein quantification and quantitative protein mapping using ICP-MS. TrAC - Trends Anal Chem. 2018;104:148–59. https://doi.org/10.1016/j.trac.2017.09.024 . (PMID: 10.1016/j.trac.2017.09.024)
      Calderón-Celis F, Diez-Fernández S, Costa-Fernández JM, Encinar JR, Calvete JJ, Sanz-Medel A. Elemental mass spectrometry for absolute intact protein quantification without protein-specific standards: application to snake venomics. Anal Chem. 2016;88(19):9699–706. https://doi.org/10.1021/acs.analchem.6b02585 . (PMID: 10.1021/acs.analchem.6b0258527593495)
      Razumienko E, Ornatsky O, Kinach R, Milyavsky M, Lechman E, Baranov V, et al. Element-tagged immunoassay with ICP-MS detection: evaluation and comparison to conventional immunoassays. J Immunol Methods. 2008;336(1):56–63. https://doi.org/10.1016/j.jim.2008.03.011 . (PMID: 10.1016/j.jim.2008.03.011184562752583136)
      Pérez E, Marco FM, Martínez-Peinado P, Mora J, Grindlay G. Evaluation of different competitive immunoassays for aflatoxin M 1 determination in milk samples by means of inductively coupled plasma mass spectrometry. Anal Chim Acta. 2019;1049:10–9. https://doi.org/10.1016/j.aca.2018.11.024 . (PMID: 10.1016/j.aca.2018.11.02430612640)
      de Bang TC, Husted S. Lanthanide elements as labels for multiplexed and targeted analysis of proteins, DNA and RNA using inductively-coupled plasma mass spectrometry. TrAC - Trends Anal Chem. 2015;72:45–52. https://doi.org/10.1016/j.trac.2015.03.021 . (PMID: 10.1016/j.trac.2015.03.021)
      Thickett SC, Abdelrahman AI, Ornatsky O, Bandura D, Baranov V, Winnik MA. Bio-functional, lanthanide-labeled polymer particles by seeded emulsion polymerization and their characterization by novel ICP-MS detection. J Anal At Spectrom. 2010;25(3):269–81. https://doi.org/10.1039/b916850h . (PMID: 10.1039/b916850h203966482852895)
      Tanner SD, Bandura DR, Ornatsky O, Baranov VI, Nitz M, Winnik MA. Flow cytometer with mass spectrometer detection for massively multiplexed single-cell biomarker assay. Pure Appl Chem. 2008;80(12):2627–41. https://doi.org/10.1351/pac200880122627 . (PMID: 10.1351/pac200880122627)
      Lou X, Zhang G, Herrera I, Kinach R, Ornatsky O, Baranov V, et al. Polymer-based elemental tags for sensitive bioassays. Angew Chem Int Ed. 2007;46(32):6111–4. https://doi.org/10.1002/anie.200700796 . (PMID: 10.1002/anie.200700796)
      Hu Z, Sun G, Jiang W, Xu F, Zhang Y, Xia M, et al. Chemical-modified nucleotide-based elemental tags for high-sensitive immunoassay. Anal Chem. 2019;91(9):5980–6. https://doi.org/10.1021/acs.analchem.9b00405 . (PMID: 10.1021/acs.analchem.9b0040530973226)
      Montoro Bustos AR, Encinar JR, Fernández-Argüelles MT, Costa-Fernández JM, Sanz-Medel A. Elemental mass spectrometry: a powerful tool for an accurate characterisation at elemental level of quantum dots. Chem Commun. 2009;21:3107–9. https://doi.org/10.1039/b901493d . (PMID: 10.1039/b901493d)
      Moreira-Alvarez B, Cid-Barrio L, Ferreira HS, Costa-Fernández JM, Encinar JR. Integrated analytical platforms for the comprehensive characterization of bioconjugated inorganic nanomaterials aiming at biological applications. J Anal At Spectrom. 2020;35(8):1518–29. https://doi.org/10.1039/d0ja00147c . (PMID: 10.1039/d0ja00147c)
      Bouzas-Ramos D, García-Alonso JI, Costa-Fernández JM, Ruiz EJ. Quantitative assessment of individual populations present in nanoparticle-antibody conjugate mixtures using AF4-ICP-MS/MS. Anal Chem. 2019;91(5):3567–74. https://doi.org/10.1021/acs.analchem.8b05482 . (PMID: 10.1021/acs.analchem.8b0548230727735)
      Liu R, Zhang Y, Zhang S, Qiu W, Gao Y. Silver enhancement of gold nanoparticles for biosensing: from qualitative to quantitative. Appl Spectrosc Rev. 2014;49(2):121–38. https://doi.org/10.1080/05704928.2013.807817 . (PMID: 10.1080/05704928.2013.807817)
      Cid-Barrio L, Encinar JR, Costa-Fernández JM. Catalytic gold deposition for ultrasensitive of prostate specific antigen. Sensors. 2020;20(18):5287. https://doi.org/10.3390/s20185287 . (PMID: 10.3390/s201852877571086)
      Liu R, Liu X, Tang Y, Wu L, Hou X, Lv Y. Highly sensitive immunoassay based on immunogold-silver amplification and inductively coupled plasma mass spectrometric detection. Anal Chem. 2011;83(6):2330–6. https://doi.org/10.1021/ac103265z . (PMID: 10.1021/ac103265z21348438)
      Garcia-Cortes M, Encinar JR, Costa-Fernandez JM, Sanz-Medel A. Highly sensitive nanoparticle-based immunoassays with elemental detection: application to prostate-specific antigen quantification. Biosens Bioelectron. 2016;85:128–34. https://doi.org/10.1016/j.bios.2016.04.090 . (PMID: 10.1016/j.bios.2016.04.09027162143)
      Chang YF, Hung SH, Lee YJ, Chen RC, Su LC, Lai CS, et al. Discrimination of breast cancer by measuring prostate-specific antigen levels in women’s serum. Anal Chem. 2011;83(13):5324–8. https://doi.org/10.1021/ac200754x . (PMID: 10.1021/ac200754x21591802)
      Narita D, Raica M, Suciu C, Cîmpean A, Anghel A. Immunohistochemical expression of androgen receptor and prostate-specific antigen in breast cancer. Folia Histochem Cytobiol. 2006;44(3):165–72. (PMID: 16977795)
      Zhang S, Bi S, Song X, editors. Nucleic acid amplification strategies for biosensing, bioimaging, and biomedicine: Springer; 2019.
      Ali MM, Li F, Zhang Z, Zhang K, Kang DK, Ankrum JA, et al. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev. 2014;43(10):3324–41. https://doi.org/10.1039/c3cs60439j . (PMID: 10.1039/c3cs60439j24643375)
      He Y, Chen D, Li M, Fang L, Yang WJ, Xu LJ, et al. Rolling circle amplification combined with gold nanoparticles-tag for ultra sensitive and specific quantification of DNA by inductively coupled plasma mass spectrometry. Biosens Bioelectron. 2014;58:209–13. https://doi.org/10.1016/j.bios.2014.02.072 . (PMID: 10.1016/j.bios.2014.02.07224637171)
      Li X, Chen B, He M, Hu B. Immunodetection and counting of circulating tumor cells (HepG2) by combining gold nanoparticle labeling, rolling circle amplification and ICP-MS detection of gold. Microchim Acta. 2019;186(6):344. https://doi.org/10.1007/s00604-019-3476-8 . (PMID: 10.1007/s00604-019-3476-8)
      Deng C, Zhang CH, Tang H, Jiang JH. ICP-MS DNA assay based on lanthanide labels and hybridization chain reaction amplification. Anal Methods. 2015;7(14):5767–71. https://doi.org/10.1039/C5AY00679A . (PMID: 10.1039/C5AY00679A)
      Zhang X, Chen B, He M, Wang H, Hu B. Gold nanoparticles labeling with hybridization chain reaction amplification strategy for the sensitive detection of HepG2 cells by inductively coupled plasma mass spectrometry. Biosens Bioelectron. 2016;86:736–40. https://doi.org/10.1016/j.bios.2016.07.073 . (PMID: 10.1016/j.bios.2016.07.07327476054)
      Mozhayeva D, Engelhard C. A critical review of single particle inductively coupled plasma mass spectrometry-a step towards an ideal method for nanomaterial characterization. J Anal At Spectrom. 2020;35(9):1740–83. https://doi.org/10.1039/c9ja00206e . (PMID: 10.1039/c9ja00206e)
      Han G, Xing Z, Dong Y, Zhang S, Zhang X. One-step homogeneous DNA assay with single-nanoparticle detection. Angew Chem Int Ed. 2011;50(15):3462–5. https://doi.org/10.1002/anie.201006838 . (PMID: 10.1002/anie.201006838)
      Li BR, Tang H, Yu RQ, Jiang JH. Single-nanoparticle ICPMS DNA assay based on hybridization-chain-reaction-mediated spherical nucleic acid assembly. Anal Chem. 2020;92(3):2379–82. https://doi.org/10.1021/acs.analchem.9b05741 . (PMID: 10.1021/acs.analchem.9b0574131948222)
      Pérez E, Bierla K, Grindlay G, Szpunar J, Mora J, Lobinski R. Lanthanide polymer labels for multiplexed determination of biomarkers in human serum samples by means of size exclusion chromatography-inductively coupled plasma mass spectrometry. Anal Chim Acta. 2018;1018:7–15. https://doi.org/10.1016/j.aca.2018.02.056 . (PMID: 10.1016/j.aca.2018.02.05629605136)
      Cho HK, Lim HB. Determination of prostate-specific antigen (PSA) tagged with TiO 2 nanoparticles using ICP-MS. J Anal At Spectrom. 2013;28(4):468–72. https://doi.org/10.1039/c3ja30299g . (PMID: 10.1039/c3ja30299g)
      Li X, Chen B, He M, Wang H, Xiao G, Yang B, et al. Simultaneous detection of MCF-7 and HepG2 cells in blood by ICP-MS with gold nanoparticles and quantum dots as elemental tags. Biosens Bioelectron. 2017;90:343–8. https://doi.org/10.1016/j.bios.2016.11.030 . (PMID: 10.1016/j.bios.2016.11.03027940237)
      Tanner SD, Baranov VI, Ornatsky OI, Bandura DR, George TC. An introduction to mass cytometry: fundamentals and applications. Cancer Immunol Immunother. 2013;62(5):955–65. https://doi.org/10.1007/s00262-013-1416-8 . (PMID: 10.1007/s00262-013-1416-823564178)
      Olsen LR, Leipold MD, Pedersen CB, Maecker HT. The anatomy of single cell mass cytometry data. Cytometry A. 2019;95(2):156–72. https://doi.org/10.1002/cyto.a.23621 . (PMID: 10.1002/cyto.a.2362130277658)
      Sánchez-Visedo A, Gallego B, Royo LJ, Soldado A, Valledor M, Ferrero FJ, et al. Visual detection of microRNA146a by using RNA-functionalized gold nanoparticles. Microchim Acta. 2020;187:129. https://doi.org/10.1007/s00604-020-4148-4 . (PMID: 10.1007/s00604-020-4148-4)
      Kang Q, He M, Chen B, Xiao G, Hu B. MNAzyme-catalyzed amplification assay with lanthanide tags for the simultaneous detection of multiple microRNAs by inductively coupled plasma–mass spectrometry. Anal Chem. 2020. https://doi.org/10.1021/acs.analchem.0c02455 .
    • Grant Information:
      PID2019- 109698GB-I00 Spanish Ministry of Economy and Competitiveness; FC-GRUPIN-IDI/2018/000166 Government of Principado de Asturias
    • Contributed Indexing:
      Keywords: Biomarker quantification; Clinical biomarkers; Elemental mass spectrometry; Elemental tags; ICP-MS; Signal amplification
    • الرقم المعرف:
      0 (Biomarkers)
    • الموضوع:
      Date Created: 20210306 Date Completed: 20220317 Latest Revision: 20220317
    • الموضوع:
      20240628
    • الرقم المعرف:
      10.1007/s00216-021-03251-5
    • الرقم المعرف:
      33674934