Item request has been placed!
×
Item request cannot be made.
×

Tectorigenin alleviates intrahepatic cholestasis by inhibiting hepatic inflammation and bile accumulation via activation of PPARγ.
Item request has been placed!
×
Item request cannot be made.
×

- المؤلفون: Xiang J;Xiang J; Yang G; Yang G; Ma C; Ma C; Ma C; Wei L; Wei L; Wu H; Wu H; Wu H; Zhang W; Zhang W; Tao X; Tao X; Jiang L; Jiang L; Liang Z; Liang Z; Kang L; Kang L; Yang S; Yang S; Yang S
- المصدر:
British journal of pharmacology [Br J Pharmacol] 2021 Jun; Vol. 178 (12), pp. 2443-2460. Date of Electronic Publication: 2021 Apr 16.- نوع النشر :
Journal Article; Research Support, Non-U.S. Gov't- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Wiley Country of Publication: England NLM ID: 7502536 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5381 (Electronic) Linking ISSN: 00071188 NLM ISO Abbreviation: Br J Pharmacol Subsets: MEDLINE
- بيانات النشر: Publication: London : Wiley
Original Publication: London, Macmillian Journals Ltd. - الموضوع:
- نبذة مختصرة : Background and Purpose: Increasing evidence suggests that human cholestasis is closely associated with the accumulation and activation of hepatic macrophages. Research indicates that activation of PPARγ exerts liver protective effects in cholestatic liver disease (CLD), particularly by ameliorating inflammation and fibrosis, thus limiting disease progression. However, existing PPARγ agonists, such as troglitazone and rosiglitazone, have significant side effects that prevent their clinical application in the treatment of CLD. In this study, we found that tectorigenin alleviates intrahepatic cholestasis in mice by activating PPARγ.
Experimental Approach: Wild-type mice were intragastrically administered α-naphthylisothiocyanate (ANIT) or fed a diet containing 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) to simultaneously establish an experimental model of intrahepatic cholestasis and tectorigenin intervention, followed by determination of intrahepatic cholestasis and the mechanisms involved. In addition, PPARγ-deficient mice were administered ANIT and/or tectorigenin to determine whether tectorigenin exerts its liver protective effect by activating PPARγ.
Key Results: Treatment with tectorigenin alleviated intrahepatic cholestasis by inhibiting the recruitment and activation of hepatic macrophages and by promoting the expression of bile transporters via activation of PPARγ. Furthermore, tectorigenin increased expression of the bile salt export pump (BSEP) through enhanced PPARγ binding to the BSEP promoter. In PPARγ-deficient mice, the hepatoprotective effect of tectorigenin during cholestasis was blocked.
Conclusion and Implications: In conclusion, tectorigenin reduced the recruitment and activation of hepatic macrophages and enhanced the export of bile acids by activating PPARγ. Taken together, our results suggest that tectorigenin is a candidate compound for cholestasis treatment.
(© 2021 The British Pharmacological Society.) - References: Ahmadian, M., Suh, J., Hah, N., Liddle, C., Atkins, A., Downes, M., & Evans, R. M. (2013). PPARγ signaling and metabolism: The good, the bad and the future. Nature Medicine, 19(5), 557-566. https://doi.org/10.1038/nm.3159.
Alexander, S. P. H., Cidlowski, J. A., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., & CGTP Collaborators. (2019). THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Nuclear hormone receptors. British Journal of Pharmacology, 176, S229-S246. https://doi.org/10.1111/bph.14750.
Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., & CGTP Collaborators. (2019a). THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Catalytic receptors. British Journal of Pharmacology, 176, S247-S296. https://doi.org/10.1111/bph.14751.
Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., & CGTP Collaborators. (2019b). THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Enzymes. British Journal of Pharmacology, 176, S297-S396. https://doi.org/10.1111/bph.14752.
Alexander, S. P. H., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., & Southan, C. (2019). The concise guide to pharmacology 2019/20: Transporters. British Journal of Pharmacology, 176(Suppl 1), S397-s493.
Alexander, S. P. H., Roberts, R. E., Broughton, B. R. S., Sobey, C. G., George, C. H., Stanford, S. C., Cirino, G., Docherty, J. R., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Mangum, J., Wonnacott, S., & Ahluwalia, A. (2018). Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of pharmacology. British Journal of Pharmacology, 175(3), 407-411. https://doi.org/10.1111/bph.14112.
Beuers, U., Gershwin, M., Gish, R., Invernizzi, P., Jones, D., Lindor, K., Ma, X., Mackay, I. R., Parés, A., Tanaka, A., & Vierling, J. M. (2015). Changing nomenclature for PBC: From 'cirrhosis' to 'cholangitis'. Hepatology (Baltimore, Md.), 62(5), 1620-1622.
Bolder, U., Ton-Nu, H., Schteingart, C., Frick, E., & Hofmann, A. (1997). Hepatocyte transport of bile acids and organic anions in endotoxemic rats: Impaired uptake and secretion. Gastroenterology, 112(1), 214-225. https://doi.org/10.1016/S0016-5085(97)70238-5.
Bouhlel, M., Derudas, B., Rigamonti, E., Dièvart, R., Brozek, J., Haulon, S., Zawadzki, C., Jude, B., Torpier, G., Marx, N., & Staels, B. (2007). PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metabolism, 6(2), 137-143. https://doi.org/10.1016/j.cmet.2007.06.010.
Curtis, M. J., Alexander, S., Cirino, G., Docherty, J. R., George, C. H., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Sobey, C. G., Stanford, S. C., Teixeira, M. M., Wonnacott, S., & Ahluwalia, A. (2018). Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers. British Journal of Pharmacology, 175(7), 987-993. https://doi.org/10.1111/bph.14153.
Dyson, J., Hirschfield, G., Adams, D., Beuers, U., Mann, D., Lindor, K., & Jones, D. E. (2015). Novel therapeutic targets in primary biliary cirrhosis. Nature Reviews. Gastroenterology & Hepatology, 12(3), 147-158. https://doi.org/10.1038/nrgastro.2015.12.
El Kasmi, K., Anderson, A., Devereaux, M., Vue, P., Zhang, W., Setchell, K., Karpen, S. J., & Sokol, R. J. (2013). Phytosterols promote liver injury and Kupffer cell activation in parenteral nutrition-associated liver disease. Science Translational Medicine, 5(206), 206ra137.
El Kasmi, K., Vue, P., Anderson, A., Devereaux, M., Ghosh, S., Balasubramaniyan, N., Fillon, S. A., Dahrenmoeller, C., Allawzi, A., Woods, C., & McKenna, S. (2018). Macrophage-derived IL-1β/NF-κB signaling mediates parenteral nutrition-associated cholestasis. Nature Communications, 9(1), 1393. https://doi.org/10.1038/s41467-018-03764-1.
Feld, J., Meddings, J., & Heathcote, E. (2006). Abnormal intestinal permeability in primary biliary cirrhosis. Digestive Diseases and Sciences, 51(9), 1607-1613. https://doi.org/10.1007/s10620-006-9544-z.
Fickert, P., Pollheimer, M., Beuers, U., Lackner, C., Hirschfield, G., Housset, C., Keitel, V., Schramm, C., Marschall, H. U., Karlsen, T. H., Melum, E., Kaser, A., Eksteen, B., Strazzabosco, M., Manns, M., Trauner, M., & International PSC Study Group (IPSCSG). (2014). Characterization of animal models for primary sclerosing cholangitis (PSC). Journal of Hepatology, 60(6), 1290-1303. https://doi.org/10.1016/j.jhep.2014.02.006.
Fickert, P., Stöger, U., Fuchsbichler, A., Moustafa, T., Marschall, H., Weiglein, A., Tsybrovskyy, O., Jaeschke, H., Zatloukal, K., Denk, H., & Trauner, M. (2007). A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. The American Journal of Pathology, 171(2), 525-536. https://doi.org/10.2353/ajpath.2007.061133.
Fiorotto, R., Scirpo, R., Trauner, M., Fabris, L., Hoque, R., Spirli, C., & Strazzabosco, M. (2011). Loss of CFTR affects biliary epithelium innate immunity and causes TLR4-NF-κB-mediated inflammatory response in mice. Gastroenterology, 141(4), 1498-1508.1508.e1491-1495.
Franca, A., Carlos Melo Lima Filho, A., Guerra, M. T., Weerachayaphorn, J., Loiola dos Santos, M., Njei, B., Robert, M., Xavier Lima, C., Vieira Teixeira Vidigal, P., Banales, J. M., & Ananthanarayanan, M. (2019). Effects of endotoxin on type 3 inositol 1,4,5-trisphosphate receptor in human cholangiocytes. Hepatology (Baltimore, Md.), 69(2), 817-830.
Funk, C., Pantze, M., Jehle, L., Ponelle, C., Scheuermann, G., Lazendic, M., & Gasser, R. (2001). Troglitazone-induced intrahepatic cholestasis by an interference with the hepatobiliary export of bile acids in male and female rats. Correlation with the gender difference in troglitazone sulfate formation and the inhibition of the canalicular bile salt export pump (BSEP) by troglitazone and troglitazone sulfate. Toxicology, 167(1), 83-98. https://doi.org/10.1016/s0300-483x(01)00460-7.
Funk, C., Ponelle, C., Scheuermann, G., & Pantze, M. (2001). Cholestatic potential of troglitazone as a possible factor contributing to troglitazone-induced hepatotoxicity: In vivo and in vitro interaction at the canalicular bile salt export pump (BSEP) in the rat. Molecular Pharmacology, 59(3), 627-635. https://doi.org/10.1124/mol.59.3.627.
Gao, X., Shi, D., Chen, Y., Cui, J., Wang, Y., Jiang, C., & Wu, J. H. (2012). The therapeutic effects of tectorigenin on chemically induced liver fibrosis in rats and an associated metabonomic investigation. Archives of Pharmacal Research, 35(8), 1479-1493. https://doi.org/10.1007/s12272-012-0819-y.
Gaul, S., Leszczynska, A., Alegre, F., Kaufmann, B., Johnson, C., Adams, L., Wree, A., Damm, G., Seehofer, D., Calvente, C. J., & Povero, D. (2021). Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis. Journal of Hepatology, 74(1), 156-167. https://doi.org/10.1016/j.jhep.2020.07.041.
Halilbasic, E., Baghdasaryan, A., & Trauner, M. (2013). Nuclear receptors as drug targets in cholestatic liver diseases. Clinics in Liver Disease, 17(2), 161-189. https://doi.org/10.1016/j.cld.2012.12.001.
Han, Y., Kim, H., Na, H., Nam, M., Kim, J., Kim, J., Koo, S. H., & Lee, M. O. (2017). RORα induces KLF4-mediated M2 polarization in the liver macrophages that protect against nonalcoholic steatohepatitis. Cell Reports, 20(1), 124-135. https://doi.org/10.1016/j.celrep.2017.06.017.
Harada, K., & Nakanuma, Y. (2010). Biliary innate immunity: Function and modulation. Mediators of Inflammation, 2010, 1-9. https://doi.org/10.1155/2010/373878.
Hirschfield, G., Mason, A., Luketic, V., Lindor, K., Gordon, S., Mayo, M., Kowdley, K. V., Vincent, C., Bodhenheimer, H. C. Jr., Parés, A., & Trauner, M. (2015). Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology, 148(4), 751-761.e758.
Honda, Y., Yamagiwa, S., Matsuda, Y., Takamura, M., Ichida, T., & Aoyagi, Y. (2007). Altered expression of TLR homolog RP105 on monocytes hypersensitive to LPS in patients with primary biliary cirrhosis. Journal of Hepatology, 47(3), 404-411. https://doi.org/10.1016/j.jhep.2007.03.012.
Hou, Y., Moreau, F., & Chadee, K. (2012). PPARγ is an E3 ligase that induces the degradation of NFκB/p65. Nature Communications, 3, 1300. https://doi.org/10.1038/ncomms2270.
Isaacs-Ten, A., Echeandia, M., Moreno-Gonzalez, M., Brion, A., Goldson, A., Philo, M., Patterson, A. M., Parker, A., Galduroz, M., Baker, D., & Rushbrook, S. M. (2020). Intestinal microbiome-macrophage crosstalk contributes to cholestatic liver disease by promoting intestinal permeability. Hepatology (Baltimore, Md.), 72(6), 2090.
Kaimal, R., Song, X., Yan, B., King, R., & Deng, R. (2009). Differential modulation of farnesoid X receptor signaling pathway by the thiazolidinediones. The Journal of Pharmacology and Experimental Therapeutics, 330(1), 125-134. https://doi.org/10.1124/jpet.109.151233.
Lee, H., Bae, E., & Kim, D. (2005). Hepatoprotective effect of tectoridin and tectorigenin on tert-butyl hyperoxide-induced liver injury. Journal of Pharmacological Sciences, 97(4), 541-544. https://doi.org/10.1254/jphs.SCZ040467.
Lee, H., Choo, M., Bae, E., & Kim, D. (2003). Beta-glucuronidase inhibitor tectorigenin isolated from the flower of Pueraria thunbergiana protects carbon tetrachloride-induced liver injury. Liver International: Official Journal of the International Association for the Study of the Liver, 23(4), 221-226. https://doi.org/10.1034/j.1600-0676.2003.00830.x.
Leicester, K., Olynyk, J., Brunt, E., Britton, R., & Bacon, B. (2006). Differential findings for CD14-positive hepatic monocytes/macrophages in primary biliary cirrhosis, chronic hepatitis C and nonalcoholic steatohepatitis. Liver International: Official Journal of the International Association for the Study of the Liver, 26(5), 559-565. https://doi.org/10.1111/j.1478-3231.2006.01255.x.
Li, Q., Chen, L., Yan, M., Shi, X., & Zhong, M. (2015). Tectorigenin regulates adipogenic differentiation and adipocytokines secretion via PPARγ and IKK/NF-κB signaling. Pharmaceutical Biology, 53(11), 1567-1575. https://doi.org/10.3109/13880209.2014.993038.
Li, Z., Chen, D., Jia, Y., Feng, Y., Wang, C., Tong, Y., Cui, R., Qu, K., Liu, C., & Zhang, J. (2019). κMethane-rich saline counteracts cholestasis-induced liver damage via regulating the TLR4/NF-B/NLRP3 Inflammasome pathway. Oxidative Medicine and Cellular Longevity, 2019, 6565283.
Lilley, E., Stanford, S., Kendall, D., Alexander, S., Cirino, G., Docherty, J., George, C. H., Insel, P. A., Izzo, A. A., Ji, Y., & Panettieri, R. A. (2020). ARRIVE 2.0 and the British Journal of pharmacology: Updated guidance for 2020. British Journal of Pharmacology, 177(16), 3611-3616. https://doi.org/10.1111/bph.15178.
Liu, Y., Ding, H., Chang, S., Lu, R., Zhong, H., Zhao, N., Lin, T. H., Bao, Y., Yap, L., Xu, W., Wang, M., Li, Y., Qin, S., Zhao, Y., Geng, X., Wang, S., Chen, E., Yu, Z., Chan, T. C., & Liu, S. (2020). Exposure to air pollution and scarlet fever resurgence in China: A six-year surveillance study. Nature Communications, 11(1), 4229. https://doi.org/10.1038/s41467-020-17987-8.
Luedde, T., Heinrichsdorff, J., de Lorenzi, R., De Vos, R., Roskams, T., & Pasparakis, M. (2008). IKK1 and IKK2 cooperate to maintain bile duct integrity in the liver. Proceedings of the National Academy of Sciences of the United States of America, 105(28), 9733-9738. https://doi.org/10.1073/pnas.0800198105.
Luedde, T., & Schwabe, R. (2011). NF-κB in the liver-Linking injury, fibrosis and hepatocellular carcinoma. Nature Reviews. Gastroenterology & Hepatology, 8(2), 108-118. https://doi.org/10.1038/nrgastro.2010.213.
Ma, C., Xia, R., Yang, S., Liu, L., Zhang, J., Feng, K., Shang, Y., Qu, J., Li, L., Chen, N., Xu, S., Zhang, W., Mao, J., Han, J., Chen, Y., Yang, X., Duan, Y., & Fan, G. (2020). Formononetin attenuates atherosclerosis via regulating interaction between KLF4 and SRA in apoE mice. Theranostics, 10(3), 1090-1106. https://doi.org/10.7150/thno.38115.
Ma, W., & Chen, D. (2019). Immunological abnormalities in patients with primary biliary cholangitis. Clinical Science (London, England : 1979), 133(6), 741-760. https://doi.org/10.1042/CS20181123.
Marrone, J., Soria, L., Danielli, M., Lehmann, G., Larocca, M., & Marinelli, R. (2016). Hepatic gene transfer of human aquaporin-1 improves bile salt secretory failure in rats with estrogen-induced cholestasis. Hepatology (Baltimore, Md.), 64(2), 535-548.
Miyoshi, H., Rust, C., Guicciardi, M., & Gores, G. (2001). NF-κB is activated in cholestasis and functions to reduce liver injury. The American Journal of Pathology, 158(3), 967-975. https://doi.org/10.1016/S0002-9440(10)64043-6.
Murray, P., & Wynn, T. (2011). Protective and pathogenic functions of macrophage subsets. Nature Reviews. Immunology, 11(11), 723-737. https://doi.org/10.1038/nri3073.
Nevens, F., Andreone, P., Mazzella, G., Strasser, S., Bowlus, C., Invernizzi, P., Drenth, J. P., Pockros, P. J., Regula, J., Beuers, U., & Trauner, M. (2016). A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. The New England Journal of Medicine, 375(7), 631-643. https://doi.org/10.1056/NEJMoa1509840.
Pan, C., Kim, E., Jung, S., Nho, C., & Lee, J. (2008). Tectorigenin inhibits IFN-γ/LPS-induced inflammatory responses in murine macrophage RAW 264.7 cells. Archives of Pharmacal Research, 31(11), 1447-1456. https://doi.org/10.1007/s12272-001-2129-7.
Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., & Emerson, M. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. British Journal of Pharmacology, 177(16), 3617-3624. https://doi.org/10.1111/bph.15193.
Quraishi, M., Sergeant, M., Kay, G., Iqbal, T., Chan, J., Constantinidou, C., Trivedi, P., Ferguson, J., Adams, D. H., Pallen, M., & Hirschfield, G. M. (2017). The gut-adherent microbiota of PSC-IBD is distinct to that of IBD. Gut, 66(2), 386-388. https://doi.org/10.1136/gutjnl-2016-311915.
Sasatomi, K., Noguchi, K., Sakisaka, S., Sata, M., & Tanikawa, K. (1998). Abnormal accumulation of endotoxin in biliary epithelial cells in primary biliary cirrhosis and primary sclerosing cholangitis. Journal of Hepatology, 29(3), 409-416. https://doi.org/10.1016/S0168-8278(98)80058-5.
Silva, A., & Peixoto, C. (2018). Role of peroxisome proliferator-activated receptors in non-alcoholic fatty liver disease inflammation. Cellular and Molecular Life Sciences: CMLS, 75(16), 2951-2961. https://doi.org/10.1007/s00018-018-2838-4.
Strautnieks, S., Bull, L., Knisely, A., Kocoshis, S., Dahl, N., Arnell, H., Sokal, E., Dahan, K., Childs, S., Ling, V., & Tanner, M. S. (1998). A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nature Genetics, 20(3), 233-238. https://doi.org/10.1038/3034.
Strowig, T., Henao-Mejia, J., Elinav, E., & Flavell, R. (2012). Inflammasomes in health and disease. Nature, 481(7381), 278-286. https://doi.org/10.1038/nature10759.
Tacke, F. (2017). Targeting hepatic macrophages to treat liver diseases. Journal of Hepatology, 66(6), 1300-1312. https://doi.org/10.1016/j.jhep.2017.02.026.
Tang, R., Wei, Y., Li, Y., Chen, W., Chen, H., Wang, Q., Yang, F., Miao, Q., Xiao, X., Zhang, H., Lian, M., Jiang, X., Zhang, J., Cao, Q., Fan, Z., Wu, M., Qiu, D., Fang, J. Y., Ansari, A., … Ma, X. (2018). Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy. Gut, 67(3), 534-541. https://doi.org/10.1136/gutjnl-2016-313332.
Trauner, M., Arrese, M., Soroka, C., Ananthanarayanan, M., Koeppel, T., Schlosser, S., Suchy, F. J., Keppler, D., & Boyer, J. L. (1997). The rat canalicular conjugate export pump (Mrp2) is down-regulated in intrahepatic and obstructive cholestasis. Gastroenterology, 113(1), 255-264. https://doi.org/10.1016/S0016-5085(97)70103-3.
Tsochatzis, E., Bosch, J., & Burroughs, A. (2014). Liver cirrhosis. Lancet (London, England), 383(9930), 1749-1761. https://doi.org/10.1016/S0140-6736(14)60121-5.
Welcker, K., Martin, A., Kölle, P., Siebeck, M., & Gross, M. (2004). Increased intestinal permeability in patients with inflammatory bowel disease. European Journal of Medical Research, 9(10), 456-460.
Xiong, X., Ding, Y., Chen, Z., Wang, Y., Liu, P., Qin, H., Zhou, L. S., Zhang, L. L., Huang, J., & Zhao, L. (2019). Emodin rescues intrahepatic cholestasis via stimulating FXR/BSEP pathway in promoting the canalicular export of accumulated bile. Frontiers in Pharmacology, 10, 522. https://doi.org/10.3389/fphar.2019.00522.
Yang, S., Ma, C., Wu, H., Zhang, H., Yuan, F., Yang, G., Yang, Q., Jia, L., Liang, Z., & Kang, L. (2020). Tectorigenin attenuates diabetic nephropathy by improving vascular endothelium dysfunction through activating AdipoR1/2 pathway. Pharmacological Research, 153, 104678. https://doi.org/10.1016/j.phrs.2020.104678.
Yang, S., Wei, L., Xia, R., Liu, L., Chen, Y., Zhang, W., Li, Q., Feng, K., Yu, M., Zhang, W., Qu, J., Xu, S., Mao, J., Fan, G., & Ma, C. (2019). Formononetin ameliorates cholestasis by regulating hepatic SIRT1 and PPARα. Biochemical and Biophysical Research Communications, 512(4), 770-778. https://doi.org/10.1016/j.bbrc.2019.03.131.
Yokoda, R., & Carey, E. (2019). Primary biliary cholangitis and primary sclerosing cholangitis. The American Journal of Gastroenterology, 114(10), 1593-1605. https://doi.org/10.14309/ajg.0000000000000268.
You, Z., Wang, Q., Bian, Z., Liu, Y., Han, X., Peng, Y., Shen, L., Chen, X., Qiu, D., Selmi, C., Gershwin, M. E., & Ma, X. (2012). The immunopathology of liver granulomas in primary biliary cirrhosis. Journal of Autoimmunity, 39(3), 216-221. https://doi.org/10.1016/j.jaut.2012.05.022.
Zhang, S., Yu, M., Guo, F., Yang, X., Chen, Y., Ma, C., Li, Q., Wei, Z., Li, X., Wang, H., Hu, H., Zhang, Y., Kong, D., Miao, Q. R., Hu, W., Hajjar, D. P., Zhu, Y., Han, J., & Duan, Y. (2020). Rosiglitazone alleviates intrahepatic cholestasis induced by α-naphthylisothiocyanate in mice: The role of circulating 15-deoxy-Δ-PGJ and Nogo. British Journal of Pharmacology, 177(5), 1041-1060. https://doi.org/10.1111/bph.14886. - Grant Information: 2020M683179 China Postdoctoral Science Foundation; 82000824 National Natural Science Foundation of China; 82003747 National Natural Science Foundation of China; 19JCQNJC12600 Natural Science Foundation of Tianjin City; 2019KJ044 Research project of Tianjin education commission
- Contributed Indexing: Keywords: PPARγ; hepatocytes; intrahepatic cholestasis; macrophage; tectorigenin
- الرقم المعرف: 0 (Bile Acids and Salts)
0 (Isoflavones)
0 (PPAR gamma)
855130H9CO (tectorigenin) - الموضوع: Date Created: 20210304 Date Completed: 20210705 Latest Revision: 20210705
- الموضوع: 20221213
- الرقم المعرف: 10.1111/bph.15429
- الرقم المعرف: 33661551
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login

حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.