Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The dominance model for heterosis explains culm length genetics in a hybrid sorghum variety.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Heterosis helps increase the biomass of many crops; however, while models for its mechanisms have been proposed, it is not yet fully understood. Here, we use a QTL analysis of the progeny of a high-biomass sorghum F 1 hybrid to examine heterosis. Five QTLs were identified for culm length and were explained using the dominance model. Five resultant homozygous dominant alleles were used to develop pyramided lines, which produced biomasses like the original F 1 line. Cloning of one of the uncharacterised genes (Dw7a) revealed that it encoded a MYB transcription factor, that was not yet proactively used in modern breeding, suggesting that combining classic dw1or dw3, and new (dw7a) genes is an important breeding strategy. In conclusion, heterosis is explained in this situation by the dominance model and a combination of genes that balance the shortness and early flowering of the parents, to produce F 1 seed yields.
    • References:
      Lippman, Z. B. & Zamir, D. Heterosis: Revisiting the magic. Trends Genet. 23, 60–66 (2007). (PMID: 1718839810.1016/j.tig.2006.12.006)
      Jones, D. F. Dominance of linked factors as a means of accounting for heterosis. Proc. Natl. Acad. Sci. U. S. A. 3, 310–312 (1917). (PMID: 16586724109124110.1073/pnas.3.4.310)
      Bruce, A. B. The Mendelian theory of heredity and the augmentation of vigor. Science 32, 627–628 (1910). (PMID: 1781670610.1126/science.32.827.627.b)
      Krieger, U., Lippman, Z. B. & Zamir, D. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat. Genet. 42, 459–463 (2010). (PMID: 2034895810.1038/ng.550)
      Zhou, G. et al. Genetic composition of yield heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. U. S. A. 109, 15847–15852 (2012). (PMID: 23019369346538710.1073/pnas.1214141109)
      Shull, G. H. The composition of a field of maize. J. Hered. 1, 296–301 (1908). (PMID: 10.1093/jhered/os-4.1.296)
      East, E. M. Heterosis. Genetics 21, 375–397 (1936). (PMID: 17246801120868210.1093/genetics/21.4.375)
      Li, X., Li, X., Fridman, E., Tesso, T. T. & Yu, J. Dissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis. Proc Natl Acad Sci U S A 112, 11823–11828 (2015). (PMID: 26351684458687110.1073/pnas.1509229112)
      Stuber, C. W., Lincoln, S. E., Wolff, D. W., Helentjaris, T. & Lander, E. S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132, 823–839 (1992). (PMID: 1468633120521810.1093/genetics/132.3.823)
      Graham, G. I., Wolff, D. W. & Stuber, C. W. Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping. Crop Sci. 37, 1601–1610 (1997). (PMID: 10.2135/cropsci1997.0011183X003700050033x)
      Minvielle, F. Dominance is not necessary for heterosis: A two-locus model. Genet. Res. 49, 245–247 (1987). (PMID: 10.1017/S0016672300027142)
      Schnell, F. W. & Cockerham, C. C. Multiplicative vs. arbitrary gene action in heterosis. Genetics 131, 461–469 (1992). (PMID: 1644280120501810.1093/genetics/131.2.461)
      Yu, S. B. et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. U. S. A. 94, 9226–9231 (1997). (PMID: 110385672312710.1073/pnas.94.17.9226)
      Kusterer, B. et al. Heterosis for biomass-related traits in Arabidopsis investigated by quantitative trait loci analysis of the triple testcross design with recombinant inbred lines. Genetics 177, 1839–1850 (2007). (PMID: 18039885214794410.1534/genetics.107.077628)
      Fujimoto, R. et al. Recent research on the mechanism of heterosis is important for crop and vegetable breeding systems. Breed. Sci. 68, 145–158 (2018). (PMID: 29875598598219110.1270/jsbbs.17155)
      Greaves, I. K. et al. Trans chromosomal methylation in Arabidopsis hybrids. Proc. Natl. Acad. Sci. U. S. A. 109, 3570–3575 (2012). (PMID: 22331882329525310.1073/pnas.1201043109)
      Shen, H. et al. Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell 24, 875–892 (2012). (PMID: 22438023333612910.1105/tpc.111.094870)
      He, G. et al. Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22, 17–33 (2010). (PMID: 20086188282870710.1105/tpc.109.072041)
      Ni, Z. et al. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 457, 327–331 (2009). (PMID: 1902988110.1038/nature07523)
      Quinby, J. R. & Karper, R. E. Inheritance of height in sorghum. Agron. J. 46, 211–216 (1954). (PMID: 10.2134/agronj1954.00021962004600050007x)
      Hirano, K. et al. Sorghum DW1 positively regulates brassinosteroid signaling by inhibiting the nuclear localization of BRASSINOSTEROID INSENSITIVE 2. Sci. Rep. 7, 126 (2017). (PMID: 28273925542835610.1038/s41598-017-00096-w)
      Hilley, J. L. et al. Sorghum Dw2 encodes a protein kinase regulator of stem internode length. Sci. Rep. 7, 4616 (2017). (PMID: 28676627549685210.1038/s41598-017-04609-5)
      Multani, D. S. et al. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302, 81–84 (2003). (PMID: 1452607310.1126/science.1086072)
      Yang, S. et al. Sorghum phytochrome B inhibits flowering in long days by activating expression of SbPRR37 and SbGHD7, repressors of SbEHD1, SbCN8 and SbCN12. PLoS ONE 9, e105352 (2014). (PMID: 25122453413334510.1371/journal.pone.0105352)
      Murphy, R. L. et al. Ghd7 (Ma6) represses sorghum flowering in long days: Ghd7 alleles enhance biomass accumulation and grain production. Plant Genome 7, 1–10 (2014). (PMID: 10.3835/plantgenome2013.11.0040)
      Xue, W. et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40, 761–767 (2008). (PMID: 1845414710.1038/ng.143)
      Stracke, R., Werber, M. & Weisshaar, B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol. 4, 447–456 (2001). (PMID: 1159750410.1016/S1369-5266(00)00199-0)
      Upadhyaya, H. D. et al. Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci. 49, 1769–1780 (2009). (PMID: 10.2135/cropsci2009.01.0014)
      Shehzad, T., Okuizumi, H., Kawae, M. & Okuno, K. Development of SSR-based sorghum (Sorghum bicolor (L.) Moench) diversity research set of germplasm and its evaluation by morphological traits. Genet. Resour. Crop Evol. 56, 809–827 (2009). (PMID: 10.1007/s10722-008-9403-1)
      Yamaguchi, M. et al. Sorghum Dw1, an agronomically important gene for lodging resistance, encodes a novel protein involved in cell proliferation. Sci. Rep. 6, 28366 (2016). (PMID: 27329702491659910.1038/srep28366)
      Sabeti, P. C. et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002). (PMID: 1239735710.1038/nature01140)
      Voight, B. F., Kudaravalli, S., Wen, X. & Pritchard, J. K. A map of recent positive selection in the human genome. PLoS Biol. 4, e72 (2006). (PMID: 16494531138201810.1371/journal.pbio.0040072)
      Murphy, R. L. et al. Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc. Natl. Acad. Sci. U. S. A. 108, 16469–16474 (2011). (PMID: 21930910318272710.1073/pnas.1106212108)
      Huang, X. et al. Genomic architecture of heterosis for yield traits in rice. Nature 537, 629–633 (2016). (PMID: 2760251110.1038/nature19760)
      Liu, J., Li, M., Zhang, Q., Wei, X. & Huang, X. Exploring the molecular basis of heterosis for plant breeding. J. Integr. Plant Biol. 62, 287–298 (2020). (PMID: 3091646410.1111/jipb.12804)
      Broman, K. W., Wu, H., Sen, S. & Churchill, G. A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889–890 (2003). (PMID: 1272430010.1093/bioinformatics/btg112)
      Kosambi, D. D. The estimation of map distances from recombination values. Ann. Eugenics 12, 172–175 (1944). (PMID: 10.1111/j.1469-1809.1943.tb02321.x)
      Wickham, H. & Sievert, C. Ggplot2: Elegant Graphics for Data Analysis Second. (Springer, Berlin, 2016). (PMID: 10.1007/978-3-319-24277-4)
      Murray, M. G. & Thompson, W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4325 (1980). (PMID: 743311132424110.1093/nar/8.19.4321)
      Yonemaru, J. et al. Development of genome-wide simple sequence repeat markers using whole-genome shotgun sequences of sorghum (Sorghum bicolor (L.) Moench). DNA Res. 16, 187–193 (2009). (PMID: 19363056269577210.1093/dnares/dsp005)
      Jones, D. T., Taylor, W. R. & Thornton, J. M. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8, 275–282 (1992). (PMID: 1633570)
      Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018). (PMID: 29722887596755310.1093/molbev/msy096)
      Endo, M., Mikami, M. & Toki, S. Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol. 56, 41–47 (2015). (PMID: 2539206810.1093/pcp/pcu154)
      Ozawa, K. A high-efficiency Agrobacterium-mediated transformation system of rice (Oryza sativa L.). Methods Mol. Biol. 847, 51–57 (2012). (PMID: 2235099810.1007/978-1-61779-558-9_5)
      Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009). (PMID: 19451168270523410.1093/bioinformatics/btp324)
      McKenna, A. et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010). (PMID: 20644199292850810.1101/gr.107524.110)
      Yano, K. et al. GWAS with principal component analysis identifies a gene comprehensively controlling rice architecture. Proc. Natl. Acad. Sci. U. S. A. 116, 21262–21267 (2019). (PMID: 31570620680032810.1073/pnas.1904964116)
      Leigh, J. W. & Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015). (PMID: 10.1111/2041-210X.12410)
    • الموضوع:
      Date Created: 20210226 Date Completed: 20211208 Latest Revision: 20230129
    • الموضوع:
      20231215
    • الرقم المعرف:
      PMC7907390
    • الرقم المعرف:
      10.1038/s41598-021-84020-3
    • الرقم المعرف:
      33633216