References: Lippman, Z. B. & Zamir, D. Heterosis: Revisiting the magic. Trends Genet. 23, 60–66 (2007). (PMID: 1718839810.1016/j.tig.2006.12.006)
Jones, D. F. Dominance of linked factors as a means of accounting for heterosis. Proc. Natl. Acad. Sci. U. S. A. 3, 310–312 (1917). (PMID: 16586724109124110.1073/pnas.3.4.310)
Bruce, A. B. The Mendelian theory of heredity and the augmentation of vigor. Science 32, 627–628 (1910). (PMID: 1781670610.1126/science.32.827.627.b)
Krieger, U., Lippman, Z. B. & Zamir, D. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat. Genet. 42, 459–463 (2010). (PMID: 2034895810.1038/ng.550)
Zhou, G. et al. Genetic composition of yield heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. U. S. A. 109, 15847–15852 (2012). (PMID: 23019369346538710.1073/pnas.1214141109)
Shull, G. H. The composition of a field of maize. J. Hered. 1, 296–301 (1908). (PMID: 10.1093/jhered/os-4.1.296)
East, E. M. Heterosis. Genetics 21, 375–397 (1936). (PMID: 17246801120868210.1093/genetics/21.4.375)
Li, X., Li, X., Fridman, E., Tesso, T. T. & Yu, J. Dissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis. Proc Natl Acad Sci U S A 112, 11823–11828 (2015). (PMID: 26351684458687110.1073/pnas.1509229112)
Stuber, C. W., Lincoln, S. E., Wolff, D. W., Helentjaris, T. & Lander, E. S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132, 823–839 (1992). (PMID: 1468633120521810.1093/genetics/132.3.823)
Graham, G. I., Wolff, D. W. & Stuber, C. W. Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping. Crop Sci. 37, 1601–1610 (1997). (PMID: 10.2135/cropsci1997.0011183X003700050033x)
Minvielle, F. Dominance is not necessary for heterosis: A two-locus model. Genet. Res. 49, 245–247 (1987). (PMID: 10.1017/S0016672300027142)
Schnell, F. W. & Cockerham, C. C. Multiplicative vs. arbitrary gene action in heterosis. Genetics 131, 461–469 (1992). (PMID: 1644280120501810.1093/genetics/131.2.461)
Yu, S. B. et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. U. S. A. 94, 9226–9231 (1997). (PMID: 110385672312710.1073/pnas.94.17.9226)
Kusterer, B. et al. Heterosis for biomass-related traits in Arabidopsis investigated by quantitative trait loci analysis of the triple testcross design with recombinant inbred lines. Genetics 177, 1839–1850 (2007). (PMID: 18039885214794410.1534/genetics.107.077628)
Fujimoto, R. et al. Recent research on the mechanism of heterosis is important for crop and vegetable breeding systems. Breed. Sci. 68, 145–158 (2018). (PMID: 29875598598219110.1270/jsbbs.17155)
Greaves, I. K. et al. Trans chromosomal methylation in Arabidopsis hybrids. Proc. Natl. Acad. Sci. U. S. A. 109, 3570–3575 (2012). (PMID: 22331882329525310.1073/pnas.1201043109)
Shen, H. et al. Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell 24, 875–892 (2012). (PMID: 22438023333612910.1105/tpc.111.094870)
He, G. et al. Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22, 17–33 (2010). (PMID: 20086188282870710.1105/tpc.109.072041)
Ni, Z. et al. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 457, 327–331 (2009). (PMID: 1902988110.1038/nature07523)
Quinby, J. R. & Karper, R. E. Inheritance of height in sorghum. Agron. J. 46, 211–216 (1954). (PMID: 10.2134/agronj1954.00021962004600050007x)
Hirano, K. et al. Sorghum DW1 positively regulates brassinosteroid signaling by inhibiting the nuclear localization of BRASSINOSTEROID INSENSITIVE 2. Sci. Rep. 7, 126 (2017). (PMID: 28273925542835610.1038/s41598-017-00096-w)
Hilley, J. L. et al. Sorghum Dw2 encodes a protein kinase regulator of stem internode length. Sci. Rep. 7, 4616 (2017). (PMID: 28676627549685210.1038/s41598-017-04609-5)
Multani, D. S. et al. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302, 81–84 (2003). (PMID: 1452607310.1126/science.1086072)
Yang, S. et al. Sorghum phytochrome B inhibits flowering in long days by activating expression of SbPRR37 and SbGHD7, repressors of SbEHD1, SbCN8 and SbCN12. PLoS ONE 9, e105352 (2014). (PMID: 25122453413334510.1371/journal.pone.0105352)
Murphy, R. L. et al. Ghd7 (Ma6) represses sorghum flowering in long days: Ghd7 alleles enhance biomass accumulation and grain production. Plant Genome 7, 1–10 (2014). (PMID: 10.3835/plantgenome2013.11.0040)
Xue, W. et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40, 761–767 (2008). (PMID: 1845414710.1038/ng.143)
Stracke, R., Werber, M. & Weisshaar, B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol. 4, 447–456 (2001). (PMID: 1159750410.1016/S1369-5266(00)00199-0)
Upadhyaya, H. D. et al. Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci. 49, 1769–1780 (2009). (PMID: 10.2135/cropsci2009.01.0014)
Shehzad, T., Okuizumi, H., Kawae, M. & Okuno, K. Development of SSR-based sorghum (Sorghum bicolor (L.) Moench) diversity research set of germplasm and its evaluation by morphological traits. Genet. Resour. Crop Evol. 56, 809–827 (2009). (PMID: 10.1007/s10722-008-9403-1)
Yamaguchi, M. et al. Sorghum Dw1, an agronomically important gene for lodging resistance, encodes a novel protein involved in cell proliferation. Sci. Rep. 6, 28366 (2016). (PMID: 27329702491659910.1038/srep28366)
Sabeti, P. C. et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002). (PMID: 1239735710.1038/nature01140)
Voight, B. F., Kudaravalli, S., Wen, X. & Pritchard, J. K. A map of recent positive selection in the human genome. PLoS Biol. 4, e72 (2006). (PMID: 16494531138201810.1371/journal.pbio.0040072)
Murphy, R. L. et al. Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc. Natl. Acad. Sci. U. S. A. 108, 16469–16474 (2011). (PMID: 21930910318272710.1073/pnas.1106212108)
Huang, X. et al. Genomic architecture of heterosis for yield traits in rice. Nature 537, 629–633 (2016). (PMID: 2760251110.1038/nature19760)
Liu, J., Li, M., Zhang, Q., Wei, X. & Huang, X. Exploring the molecular basis of heterosis for plant breeding. J. Integr. Plant Biol. 62, 287–298 (2020). (PMID: 3091646410.1111/jipb.12804)
Broman, K. W., Wu, H., Sen, S. & Churchill, G. A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889–890 (2003). (PMID: 1272430010.1093/bioinformatics/btg112)
Kosambi, D. D. The estimation of map distances from recombination values. Ann. Eugenics 12, 172–175 (1944). (PMID: 10.1111/j.1469-1809.1943.tb02321.x)
Wickham, H. & Sievert, C. Ggplot2: Elegant Graphics for Data Analysis Second. (Springer, Berlin, 2016). (PMID: 10.1007/978-3-319-24277-4)
Murray, M. G. & Thompson, W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4325 (1980). (PMID: 743311132424110.1093/nar/8.19.4321)
Yonemaru, J. et al. Development of genome-wide simple sequence repeat markers using whole-genome shotgun sequences of sorghum (Sorghum bicolor (L.) Moench). DNA Res. 16, 187–193 (2009). (PMID: 19363056269577210.1093/dnares/dsp005)
Jones, D. T., Taylor, W. R. & Thornton, J. M. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8, 275–282 (1992). (PMID: 1633570)
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018). (PMID: 29722887596755310.1093/molbev/msy096)
Endo, M., Mikami, M. & Toki, S. Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol. 56, 41–47 (2015). (PMID: 2539206810.1093/pcp/pcu154)
Ozawa, K. A high-efficiency Agrobacterium-mediated transformation system of rice (Oryza sativa L.). Methods Mol. Biol. 847, 51–57 (2012). (PMID: 2235099810.1007/978-1-61779-558-9_5)
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009). (PMID: 19451168270523410.1093/bioinformatics/btp324)
McKenna, A. et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010). (PMID: 20644199292850810.1101/gr.107524.110)
Yano, K. et al. GWAS with principal component analysis identifies a gene comprehensively controlling rice architecture. Proc. Natl. Acad. Sci. U. S. A. 116, 21262–21267 (2019). (PMID: 31570620680032810.1073/pnas.1904964116)
Leigh, J. W. & Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015). (PMID: 10.1111/2041-210X.12410)
No Comments.