Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A hybrid deep neural network for classification of schizophrenia using EEG Data.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Schizophrenia is a serious mental illness that causes great harm to patients, so timely and accurate detection is essential. This study aimed to identify a better feature to represent electroencephalography (EEG) signals and improve the classification accuracy of patients with schizophrenia and healthy controls by using EEG signals. Our research method involves two steps. First, the EEG time series is preprocessed, and the extracted time-domain and frequency-domain features are transformed into a sequence of red-green-blue (RGB) images that carry spatial information. Second, we construct hybrid deep neural networks (DNNs) that combine convolution neural networks and long short-term memory to address RGB images to classify schizophrenic patients and healthy controls. The results show that the fuzzy entropy (FuzzyEn) feature is more significant than the fast Fourier transform (FFT) feature in brain topography. The deep learning (DL) method that we propose achieves an average accuracy of 99.22% with FuzzyEn and an average accuracy of 96.34% with FFT. These results show that the best effect is to extract fuzzy features as input features from EEG time series and then use a hybrid DNN for classification. Compared with the most advanced methods in this field, significant improvements have been achieved.
    • References:
      Boostani, R., Sadatnezhad, K. & Sabeti, M. An efficient classifier to diagnose of schizophrenia based on the EEG signals. Expert Syst. Appl. 36, 6492–6499 (2009). (PMID: 10.1016/j.eswa.2008.07.037)
      Ahmadlou, M., Adeli, H. & Adeli, A. Fractality analysis of frontal brain in major depressive disorder. Int. J. Psychophysiol. 85, 206–211 (2012). (PMID: 2258018810.1016/j.ijpsycho.2012.05.001)
      Cogan, D., Birjandtalab, J., Nourani, M., Harvey, J. & Nagaraddi, V. Multi-biosignal analysis for epileptic seizure monitoring. Int. J. Neural Syst. https://doi.org/10.1142/s0129065716500313 (2017). (PMID: 10.1142/s012906571650031327389004)
      Morabito, F. C. et al. A longitudinal EEG study of Alzheimer’s disease progression based on a complex network approach. Int. J. Neural Syst. https://doi.org/10.1142/s0129065715500057 (2015). (PMID: 10.1142/s012906571550005725655033)
      Akar, S. A., Kara, S., Latifoğlu, F. & Bilgiç, V. Analysis of the complexity measures in the EEG of schizophrenia patients. Int. J. Neural Syst. 26, 1650008 (2016). (PMID: 2676286610.1142/S0129065716500088)
      Bonita, J. D. et al. Time domain measures of inter-channel EEG correlations: a comparison of linear, nonparametric and nonlinear measures. Cognit. Neurodyn. 8, 1–15 (2014). (PMID: 10.1007/s11571-013-9267-8)
      Rozgic, V., Vitaladevuni, S. N. & Prasad, R. in IEEE International Conference on Acoustics.
      Gadhoumi, K., Lina, J.-M., Mormann, F. & Gotman, J. Seizure prediction for therapeutic devices: a review. J. Neurosci. Methods 260, 270–282 (2016). (PMID: 2609954910.1016/j.jneumeth.2015.06.010)
      Alotaiby, T. N., Alshebeili, S. A., Alshawi, T., Ahmad, I. & El-Samie, F. E. A. EEG seizure detection and prediction algorithms: a survey. EURASIP J. Adv. Signal Process. 2014, 183 (2014). (PMID: 10.1186/1687-6180-2014-183)
      Min, S., Lee, B. & Yoon, S. Deep learning in bioinformatics. Brief. Bioinform. 18, 851–869 (2017). (PMID: 27473064)
      Zhou, M. et al. Epileptic seizure detection based on EEG signals and CNN. Front. Neuroinform. 12, 95 (2018). (PMID: 30618700629545110.3389/fninf.2018.00095)
      Chen, H., Song, Y. & Li, X. A deep learning framework for identifying children with ADHD using an EEG-based brain network. Neurocomputing 356, 83–96 (2019). (PMID: 10.1016/j.neucom.2019.04.058)
      Ieracitano, C., Mammone, N., Bramanti, A., Hussain, A. & Morabito, F. C. A convolutional neural network approach for classification of dementia stages based on 2D-spectral representation of EEG recordings. Neurocomputing 323, 96–107 (2019). (PMID: 10.1016/j.neucom.2018.09.071)
      Oh, S. L., Vicnesh, J., Ciaccio, E. J., Yuvaraj, R. & Acharya, U. R. Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals. Appl. Sci. 9, 2870 (2019). (PMID: 10.3390/app9142870)
      Andersen, E., Campbell, A., Girdler, S., Duffy, K. & Belger, A. Acute stress modifies oscillatory indices of affective processing: Insight on the pathophysiology of schizophrenia spectrum disorders. Clin. Neurophysiol. 130, 214–223 (2019). (PMID: 3058024410.1016/j.clinph.2018.10.019)
      Bose, T., Sivakumar, S. D. & Kesavamurthy, B. Identification of schizophrenia using EEG alpha band power during hyperventilation and post-hyperventilation. J. Med. Biol. Eng. 36, 901–911 (2016). (PMID: 10.1007/s40846-016-0192-2)
      Dierks, T. Equivalent EEG sources determined by FFT approximation in healthy subjects, schizophrenic and depressive patients. Brain Topogr. 4, 207–213 (1992). (PMID: 163305910.1007/BF01131152)
      Tibdewal, M. N., Dey, H. R., Mahadevappa, M., Ray, A. & Malokar, M. Multiple entropies performance measure for detection and localization of multi-channel epileptic EEG. Biomed. Signal Process. Control 38, 158–167 (2017). (PMID: 10.1016/j.bspc.2017.05.002)
      Xiang, J. et al. Abnormal entropy modulation of the EEG signal in patients with schizophrenia during the auditory paired-stimulus paradigm. Front. Neuroinform. 13, 4 (2019). (PMID: 30837859639006510.3389/fninf.2019.00004)
      Chan, A. M., Sun, F. T., Boto, E. H. & Wingeier, B. M. Automated seizure onset detection for accurate onset time determination in intracranial EEG. Clin. Neurophysiol. 119, 2687–2696. https://doi.org/10.1016/j.clinph.2008.08.025 (2008). (PMID: 10.1016/j.clinph.2008.08.02518993113)
      Chen, W., Wang, Z., Xie, H. & Yu, W. Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 266–272 (2007). (PMID: 1760119710.1109/TNSRE.2007.897025)
      Kosko, B. Fuzzy entropy and conditioning. Inf. Sci. 40, 165–174 (1986). (PMID: 10.1016/0020-0255(86)90006-X)
      Cheng, H., Chen, Y. & Jiang, X. Thresholding using two-dimensional histogram and fuzzy entropy principle. IEEE Trans. Image Process. 9, 732–735 (2000). (PMID: 1825544510.1109/83.841949)
      Heckbert, P. Fourier transforms and the fast Fourier transform (FFT) algorithm. Comput. Graphics 2, 15–463 (1995).
      Zonst, A. E. Understanding the FFT: A Tutorial on the Algorithm & Software for Laymen, Students, Technicians & Working Engineers (Citrus Press, London, 1995).
      AlGhayab, H. R., Li, Y., Siuly, S. & Abdulla, S. Epileptic seizures detection in EEGs blending frequency domain with information gain technique. Soft Comput. 23, 227–239 (2019). (PMID: 10.1007/s00500-018-3487-0)
      Durongbhan, P. et al. A dementia classification framework using frequency and time-frequency features based on EEG signals. IEEE Trans. Neural Syst. Rehabil. Eng. 27, 826–835 (2019). (PMID: 3095147310.1109/TNSRE.2019.2909100)
      Snyder, J. P. Map Projections–A Working Manual Vol. 1395 (US Government Printing Office, Washington, 1987).
      Bashivan, P., Rish, I., Yeasin, M. & Codella, N. Learning representations from EEG with deep recurrent-convolutional neural networks. https://arxiv.org/abs/1511.06448 (2015).
      Alfeld, P. A trivariate clough—tocher scheme for tetrahedral data. Comput. Aided Geom. Des. 1, 169–181 (1984). (PMID: 10.1016/0167-8396(84)90029-3)
      Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436 (2015). (PMID: 2601744210.1038/nature14539)
      Simonyan, K. & Zisserman, A.. Very deep convolutional networks for large-scale image recognition. https://arxiv.org/abs/1409.1556 (2014).
      Petrosian, A., Prokhorov, D., Homan, R., Dasheiff, R. & Wunsch, D. II. Recurrent neural network based prediction of epileptic seizures in intra-and extracranial EEG. Neurocomputing 30, 201–218 (2000). (PMID: 10.1016/S0925-2312(99)00126-5)
      Graves, A. Supervised Sequence Labelling with Recurrent Neural Networks 5–13 (Springer, Berlin, 2012).
      Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. https://arxiv.org/abs/1412.6980 (2014).
      Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).
      Duda, R. O., Hart, P. E. & Stork, D. G. Pattern Classification (Wiley, Hoboken, 2012).
      Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate : a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).
      Armstrong, R. A. When to use the Bonferroni correction. Ophthalic Physiol. Opt. J. Br. Coll. Ophthalmic Opt. 34, 502–508 (2015). (PMID: 10.1111/opo.12131)
      Acharya, U. R. et al. A novel depression diagnosis index using nonlinear features in EEG signals. Eur. Neurol. 74, 79–83 (2015). (PMID: 2630303310.1159/000438457)
      Fernández, A. et al. Lempel-Ziv complexity in schizophrenia: a MEG study. Clin. Neurophysiol. 122, 2227–2235 (2011). (PMID: 2159285610.1016/j.clinph.2011.04.011)
      Namazi, H., Aghasian, E. & Ala, T. S. Fractal-based classification of electroencephalography (EEG) signals in healthy adolescents and adolescents with symptoms of schizophrenia. Technol Health Care 27, 1–9 (2019). (PMID: 10.3233/THC-181497)
      Takahashi, T. et al. Antipsychotics reverse abnormal EEG complexity in drug-naive schizophrenia: a multiscale entropy analysis. Neuroimage 51, 173–182 (2010). (PMID: 20149880284916610.1016/j.neuroimage.2010.02.009)
      Begić, D. et al. Quantitative electroencephalography in schizophrenia and depression. Psychiatria Danubina 23, 355–362 (2011). (PMID: 22075736)
      Zhao, Q. et al. in 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER). 484–488 (IEEE).
      Li, Y. et al. Abnormal EEG complexity in patients with schizophrenia and depression. Clin. Neurophysiol. 119, 1232–1241 (2008). (PMID: 1839645410.1016/j.clinph.2008.01.104)
      Ford, J. M. et al. Out-of-synch and out-of-sorts: dysfunction of motor-sensory communication in schizophrenia. Biol. Psychiatry. 63(8), 736–743 (2008). (PMID: 1798126410.1016/j.biopsych.2007.09.013)
      Nenadic, I., Yotter, R. A., Sauer, H. & Gaser, C. Cortical surface complexity in frontal and temporal areas varies across subgroups of schizophrenia. Hum. Brain Mapp. 35, 1691–1699 (2014). (PMID: 2381368610.1002/hbm.22283)
      Goldstein, M. R., Peterson, M. J., Sanguinetti, J. L., Tononi, G. & Ferrarelli, F. Topographic deficits in alpha-range resting EEG activity and steady state visual evoked responses in schizophrenia. Schizophr. Res. 168, 145–152 (2015). (PMID: 2615966910.1016/j.schres.2015.06.012)
      Highley, J. R. et al. Schizophrenia and the frontal lobes: post-mortem stereological study of tissue volume. Br. J. Psychiatry 178, 337–343 (2001). (PMID: 1128281310.1192/bjp.178.4.337)
      Asmal, L. et al. Symptom attribution and frontal cortical thickness in first-episode schizophrenia. Early Interv. Psychiatry 12, 652–659 (2018). (PMID: 2757293810.1111/eip.12358)
      Sokunbi, M. O. et al. Nonlinear complexity analysis of brain FMRI signals in schizophrenia. PLoS ONE 9, e95146 (2014). (PMID: 24824731401950810.1371/journal.pone.0095146)
      Johannesen, J. K., Bi, J., Jiang, R., Kenney, J. G. & Chen, C.-M.A. Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults. Neuropsychiatr. Electrophysiol. 2, 3 (2016). (PMID: 27375854492838110.1186/s40810-016-0017-0)
      Jeong, J. W. et al. Classifying schizotypy using an audiovisual emotion perception test and scalp electroencephalography. Front. Hum. Neurosci. 11, 450 (2017). (PMID: 28955212560106510.3389/fnhum.2017.00450)
      Piryatinska, A., Darkhovsky, B. & Kaplan, A. Binary classification of multichannel-EEG records based on the ϵ-complexity of continuous vector functions. Comput. Methods Programs Biomed. 152, 131–139 (2017). (PMID: 2905425310.1016/j.cmpb.2017.09.001)
      Chu, W. L., Huang, M. W., Jian, B. L. & Cheng, K. S. Analysis of EEG entropy during visual evocation of emotion in schizophrenia. Ann. Gen. Psychiatry 16, 34 (2017). (PMID: 29021815561350510.1186/s12991-017-0157-z)
      Alimardani, F. & Boostani, R. DB-FFR: a modified feature selection algorithm to improve discrimination rate between bipolar mood disorder (BMD) and schizophrenic patients. Iran. J. Sci. Technol. Trans. Electr. Eng. 42, 251–260 (2018). (PMID: 10.1007/s40998-018-0060-x)
      Alimardani, F., Cho, J.-H., Boostani, R. & Hwang, H.-J. Classification of bipolar disorder and schizophrenia using steady-state visual evoked potential based features. IEEE Access 6, 40379–40388 (2018). (PMID: 10.1109/ACCESS.2018.2854555)
      Phang, C.-R., Ting, C.-M., Samdin, S. B. & Ombao, H. in 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER). 401–406 (IEEE).
      Phang, C.-R., Noman, F. M., Hussain, H., Ting, C.-M. & Ombao, H. A multi-domain connectome convolutional neural network for identifying schizophrenia from EEG connectivity patterns. IEEE J. Biomed. Health Inform. https://doi.org/10.1109/jbhi.2019.2941222 (2019). (PMID: 10.1109/jbhi.2019.294122231536026)
    • الموضوع:
      Date Created: 20210226 Date Completed: 20211210 Latest Revision: 20230129
    • الموضوع:
      20230130
    • الرقم المعرف:
      PMC7907145
    • الرقم المعرف:
      10.1038/s41598-021-83350-6
    • الرقم المعرف:
      33633134