Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Response differences of HepG2 and Primary Mouse Hepatocytes to morphological changes in electrospun PCL scaffolds.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Bate TSR;Bate TSR; Gadd VL; Gadd VL; Forbes SJ; Forbes SJ; Callanan A; Callanan A
- المصدر:
Scientific reports [Sci Rep] 2021 Feb 04; Vol. 11 (1), pp. 3059. Date of Electronic Publication: 2021 Feb 04.- نوع النشر :
Journal Article; Research Support, Non-U.S. Gov't- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
- بيانات النشر: Original Publication: London : Nature Publishing Group, copyright 2011-
- الموضوع: Cytochrome P-450 CYP1A2/*genetics ; Liver/*metabolism ; Liver Diseases/*therapy ; Tissue Scaffolds/*chemistry; Animals ; Biomimetics ; Cell Proliferation/genetics ; Gene Expression Regulation ; Hep G2 Cells ; Hepatocytes/metabolism ; Hepatocytes/pathology ; Humans ; Liver/growth & development ; Liver/pathology ; Liver Diseases/genetics ; Liver Diseases/pathology ; Mice ; Tissue Engineering/methods
- نبذة مختصرة : Liver disease cases are rapidly expanding across the globe and the only effective cure for end-stage disease is a transplant. Transplant procedures are costly and current supply of donor livers does not satisfy demand. Potential drug treatments and regenerative therapies that are being developed to tackle these pressing issues require effective in-vitro culture platforms. Electrospun scaffolds provide bio-mimetic structures upon which cells are cultured to regulate function in-vitro. This study aims to shed light on the effects of electrospun PCL morphology on the culture of an immortalised hepatic cell line and mouse primary hepatocytes. Each cell type was cultured on large 4-5 µm fibres and small 1-2 µm fibres with random, aligned and highly porous cryogenically spun configurations. Cell attachment, proliferation, morphology and functional protein and gene expression was analysed. Results show that fibre morphology has a measurable influence on cellular morphology and function, with the alteration of key functional markers such as CYP1A2 expression.
- References: Berkan-Kawińska, A. & Piekarska, A. Hepatocellular carcinoma in non-alcohol fatty liver disease—changing trends and specific challenges. Curr. Med. Res. Opin. https://doi.org/10.1080/03007995.2019.1683817 (2019). (PMID: 10.1080/03007995.2019.168381731631714)
Lee, B. P. & Terrault, N. A. Liver-related mortality in the United States: Hepatitis C declines, non-alcoholic fatty liver and alcohol rise. Transl. Gastroenterol. Hepatol. 4, 19–22 (2019). https://doi.org/10.21037/tgh.2019.03.04 . (PMID: 30976722645834810.21037/tgh.2019.03.04)
Suraweera, D., Konyn, P., Vu, T. & Saab, S. Clinical epidemiology of chronic liver disease: Hepatocellular carcinoma. In Clinical Epidemiology of Chronic Liver Diseases 229–249 (Springer International Publishing, New York, 2019). https://doi.org/10.1007/978-3-319-94355-8_15 .
Ladep, N. G., Akbar, S. M. F. & Al Mahtab, M. Global epidemiology of chronic liver disease. In Clinical Epidemiology of Chronic Liver Diseases 41–55 (Springer International Publishing, New York, 2019). https://doi.org/10.1007/978-3-319-94355-8_5 .
Asrani, S. K., Devarbhavi, H., Eaton, J. & Kamath, P. S. Burden of liver diseases in the world. J. Hepatol. 70, 151–171 (2019). (PMID: 3026628210.1016/j.jhep.2018.09.014)
Oseini, A. M. & Sanyal, A. J. Therapies in non-alcoholic steatohepatitis (NASH). Liver Int. 37, 97–103 (2017). (PMID: 28052626549289310.1111/liv.13302)
Shimoda, H. et al. Decellularized liver scaffolds promote liver regeneration after partial hepatectomy. Sci. Rep. 9, 1–11 (2019). (PMID: 10.1038/s41598-019-48948-x)
Newsome, P. N. et al. Granulocyte colony-stimulating factor and autologous CD133-positive stem-cell therapy in liver cirrhosis (REALISTIC): An open-label, randomised, controlled phase 2 trial. Lancet Gastroenterol. Hepatol. 3, 25–36 (2018). (PMID: 2912706010.1016/S2468-1253(17)30326-6)
Starkey Lewis, P. J., Moroni, F. & Forbes, S. J. Macrophages as a cell-based therapy for liver disease. Semin. Liver Dis. 39, 442–451 (2019). (PMID: 3124252710.1055/s-0039-1688502)
Forbes, S. J., Gupta, S. & Dhawan, A. Cell therapy for liver disease: From liver transplantation to cell factory. J. Hepatol. 62, S157–S169 (2015). (PMID: 2592008510.1016/j.jhep.2015.02.040)
Rashidi, H. et al. 3D human liver tissue from pluripotent stem cells displays stable phenotype in vitro and supports compromised liver function in vivo. Arch. Toxicol. 92, 3117–3129 (2018). (PMID: 30155720613268810.1007/s00204-018-2280-2)
Haugabook, S. J., Ferrer, M. & Ottinger, E. A. In vitro and in vivo translational models for rare liver diseases. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 1003–1018 (2019). (PMID: 3007519210.1016/j.bbadis.2018.07.029)
Maraldi, T., Prata, C., Marrazzo, P., Hrelia, S. & Angeloni, C. Natural compounds as a strategy to optimize “in vitro” expansion of stem cells. Rejuvenation Res. https://doi.org/10.1089/rej.2019.2187 (2019). (PMID: 10.1089/rej.2019.218731368407)
Lauschke, V. M., Hendriks, D. F. G., Bell, C. C., Andersson, T. B. & Ingelman-Sundberg, M. Novel 3D culture systems for studies of human liver function and assessments of the hepatotoxicity of drugs and drug candidates. Chem. Res. Toxicol. 29, 1936–1955 (2016). (PMID: 2766122110.1021/acs.chemrestox.6b00150)
Lauschke, V. M., Shafagh, R. Z., Hendriks, D. F. G. & Ingelman-Sundberg, M. 3D primary hepatocyte culture systems for analyses of liver diseases, drug metabolism, and toxicity: Emerging culture paradigms and applications. Biotechnol. J. 14, 1800347 (2019). (PMID: 10.1002/biot.201800347)
Zhao, P. et al. Fabrication of scaffolds in tissue engineering: A review. Front. Mech. Eng. 13, 107–119 (2018). (PMID: 10.1007/s11465-018-0496-8)
Grant, R., Hay, D. C. & Callanan, A. A drug-induced hybrid electrospun poly-capro-lactone: Cell-derived extracellular matrix scaffold for liver tissue engineering. Tissue Eng. Part A 23, 650–662 (2017). (PMID: 2843718010.1089/ten.tea.2016.0419)
Khanal, S. et al. Nano-fibre integrated microcapsules: A nano-in-micro platform for 3D cell culture. Sci. Rep. 9, 1–12 (2019). (PMID: 10.1038/s41598-019-50380-0)
Grant, R., Hay, D. & Callanan, A. From scaffold to structure: The synthetic production of cell derived extracellular matrix for liver tissue engineering. Biomed. Phys. Eng. Express 4, 065015 (2018). (PMID: 10.1088/2057-1976/aacbe1)
Grant, R., Hallett, J., Forbes, S., Hay, D. & Callanan, A. Blended electrospinning with human liver extracellular matrix for engineering new hepatic microenvironments. Sci. Rep. 9, 1–12 (2019). (PMID: 10.1038/s41598-019-42627-7)
Fasolino, I. et al. HepG2 and human healthy hepatocyte in vitro culture and co-culture in PCL electrospun platforms. Biomed. Mater. 13, 015017 (2018). (PMID: 10.1088/1748-605X/aa8c51)
Lannutti, J., Reneker, D., Ma, T., Tomasko, D. & Farson, D. Electrospinning for tissue engineering scaffolds. Mater. Sci. Eng. C 27, 504–509 (2007). (PMID: 10.1016/j.msec.2006.05.019)
Burton, T. P., Corcoran, A. & Callanan, A. The effect of electrospun polycaprolactone scaffold morphology on human kidney epithelial cells. Biomed. Mater. 13, 015006 (2018). (PMID: 10.1088/1748-605X/aa8dde)
Reid, J. A. & Callanan, A. Hybrid cardiovascular sourced extracellular matrix scaffolds as possible platforms for vascular tissue engineering. J. Biomed. Mater. Res. Part B Appl. Biomater. https://doi.org/10.1002/jbm.b.34444 (2019). (PMID: 10.1002/jbm.b.34444)
Burton, T. P. & Callanan, A. A non-woven path: Electrospun Poly(lactic acid) scaffolds for kidney tissue engineering. Tissue Eng. Regen. Med. 15, 301–310 (2018). (PMID: 30603555617167510.1007/s13770-017-0107-5)
Reid, J. A. & Callanan, A. Influence of aorta extracellular matrix in electrospun polycaprolactone scaffolds. J. Appl. Polym. Sci. 136, 48181 (2019). (PMID: 10.1002/app.48181)
Munir, N., McDonald, A. & Callanan, A. A combinatorial approach: Cryo-printing and electrospinning hybrid scaffolds for cartilage tissue engineering. Bioprinting 16, e00056 (2019). (PMID: 10.1016/j.bprint.2019.e00056)
Steele, J. A. M. et al. Combinatorial scaffold morphologies for zonal articular cartilage engineering. Acta Biomater. 10, 2065–2075 (2014). (PMID: 24370641399141610.1016/j.actbio.2013.12.030)
Chavoshnejad, P. & Razavi, M. J. Effect of the interfiber bonding on the mechanical behavior of electrospun fibrous mats. Sci. Rep. 10, 7709 (2020). (PMID: 32382109720610410.1038/s41598-020-64735-5)
Accardi, M. A. et al. Effects of fiber orientation on the frictional properties and damage of regenerative articular cartilage surfaces. Tissue Eng. Part A 19, 2300–2310 (2013). (PMID: 23688110376155810.1089/ten.tea.2012.0580)
McCullen, S. D., Autefage, H., Callanan, A., Gentleman, E. & Stevens, M. M. Anisotropic fibrous scaffolds for articular cartilage regeneration. Tissue Eng. Part A 18, 2073–2083 (2012). (PMID: 22655795346328010.1089/ten.tea.2011.0606)
Frost, H. K. et al. Electrospun nerve guide conduits have the potential to bridge peripheral nerve injuries in vivo. Sci. Rep. 8, 1–13 (2018). (PMID: 10.1038/s41598-018-34699-8)
Martino, F., Perestrelo, A. R., Vinarský, V., Pagliari, S. & Forte, G. Cellular mechanotransduction: From tension to function. Front. Physiol. 9, 824 (2018). (PMID: 30026699604141310.3389/fphys.2018.00824)
Paluch, E. K. et al. Mechanotransduction: Use the force(s). BMC Biol. 13, (2015).
Lozoya, O. A. et al. Regulation of hepatic stem/progenitor phenotype by microenvironment stiffness in hydrogel models of the human liver stem cell niche. Biomaterials 32, 7389–7402 (2011). (PMID: 21788068315732110.1016/j.biomaterials.2011.06.042)
Cozzolino, A. M. et al. Modulating the substrate stiffness to manipulate differentiation of resident liver stem cells and to improve the differentiation state of hepatocytes. Stem Cells Int. 2016, 1–12 (2016). (PMID: 10.1155/2016/5481493)
Natarajan, V., Berglund, E. J., Chen, D. X. & Kidambi, S. Substrate stiffness regulates primary hepatocyte functions. RSC Adv. 5, 80956–80966 (2015). (PMID: 3273367510.1039/C5RA15208A)
Xia, T. et al. Gene expression profiling of human hepatocytes grown on differing substrate stiffness. Biotechnol. Lett. 40, 809–818 (2018). (PMID: 2960593910.1007/s10529-018-2536-1)
Vinken, M. et al. Primary hepatocytes and their cultures in liver apoptosis research. Arch. Toxicol. 88, 199–212 (2014). (PMID: 2401357310.1007/s00204-013-1123-4)
Fleck, N. A., Deshpande, V. S. & Ashby, M. F. Micro-architectured materials: Past, present and future. In Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 466, 2495–2516 (Royal Society, 2010).
Koh, C. T. & Oyen, M. L. Branching toughens fibrous networks. J. Mech. Behav. Biomed. Mater. 12, 74–82 (2012). (PMID: 2265936810.1016/j.jmbbm.2012.03.011)
Schutte, M. et al. Rat primary hepatocytes show enhanced performance and sensitivity to acetaminophen during three-dimensional culture on a polystyrene scaffold designed for routine use. Assay Drug Dev. Technol. 9, 475–486 (2011). (PMID: 2167587110.1089/adt.2011.0371)
Bierwolf, J. et al. Primary rat hepatocyte culture on 3D nanofibrous polymer scaffolds for toxicology and pharmaceutical research. Biotechnol. Bioeng. 108, 141–150 (2011). (PMID: 2082467210.1002/bit.22924)
Gomes, M. E., Holtorf, H. L., Reis, R. L. & Mikos, A. G. Influence of the porosity of starch-based fiber mesh scaffolds on the proliferation and osteogenic differentiation of bone marrow stromal cells cultured in a flow perfusion bioreactor. Tissue Eng. 12, 801–809 (2006). (PMID: 1667429310.1089/ten.2006.12.801)
Mandal, B. B. & Kundu, S. C. Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials 30, 2956–2965 (2009). (PMID: 1924909410.1016/j.biomaterials.2009.02.006)
van der Vusse, G. J. Albumin as fatty acid transporter. In Drug Metabolism and Pharmacokinetics, vol. 24, 300–307 (Japanese Society for the Study of Xenobiotics, 2009).
Odunayo, A. Albumin and colloid osmotic pressure. In Monitoring and Intervention for the Critically Ill Small Animal 43–53 (Wiley, Hoboken, 2016). https://doi.org/10.1002/9781118923870.ch4 .
Takahashi, Y. et al. 3D spheroid cultures improve the metabolic gene expression profiles of HepaRG cells. Biosci. Rep. 35, 1–7 (2015). (PMID: 10.1042/BSR20150034)
Butler, M. A., Iwasaki, M., Guengerich, F. P. & Kadlubar, F. F. Human cytochrome P-450(PA) (P-450IA2), the phenacetin O-deethylase, is primarily responsible for the hepatic 3-demethylation of caffeine and N-oxidation of carcinogenic arylamines. Proc. Natl. Acad. Sci. U. S. A. 86, 7696–7700 (1989). (PMID: 281335329813710.1073/pnas.86.20.7696)
Goasduff, T., Dréano, Y., Guillois, B., Ménez, J. F. & Berthou, F. Induction of liver and kidney CYP1A1/1A2 by caffeine in rat. Biochem. Pharmacol. 52, 1915–1919 (1996). (PMID: 895135110.1016/S0006-2952(96)00522-9)
Tassaneeyakul, W. et al. Caffeine metabolism by human hepatic cytochromes p450: Contributions of 1A2, 2E1 and 3A isoforms. Biochem. Pharmacol. 47, 1767–1776 (1994). (PMID: 820409310.1016/0006-2952(94)90304-2)
Vorrink, S. U. et al. Endogenous and xenobiotic metabolic stability of primary human hepatocytes in long-term 3D spheroid cultures revealed by a combination of targeted and untargeted metabolomics. FASEB J. 31, 2696–2708 (2017). (PMID: 28264975543466010.1096/fj.201601375R)
Lewis, P. L., Green, R. M. & Shah, R. N. 3D-printed gelatin scaffolds of differing pore geometry modulate hepatocyte function and gene expression. Acta Biomater. 69, 63–70 (2018). (PMID: 29317370583149410.1016/j.actbio.2017.12.042)
Zmora, S., Glicklis, R. & Cohen, S. Tailoring the pore architecture in 3-D alginate scaffolds by controlling the freezing regime during fabrication. Biomaterials 23, 4087–4094 (2002). (PMID: 1218231010.1016/S0142-9612(02)00146-1)
Gerets, H. H. J. et al. Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol. Toxicol. 28, 69–87 (2012). (PMID: 22258563330307210.1007/s10565-011-9208-4)
Wilkening, S., Stahl, F. & Bader, A. Comparison of primary human hepatocytes and hepatoma cell line HepG2 with regard to their biotransformation properties. Drug Metab. Dispos. 31, 1035–1042 (2003). (PMID: 1286749210.1124/dmd.31.8.1035)
Wiśniewski, J. R., Vildhede, A., Norén, A. & Artursson, P. In-depth quantitative analysis and comparison of the human hepatocyte and hepatoma cell line HepG2 proteomes. J. Proteomics 136, 234–247 (2016). (PMID: 2682553810.1016/j.jprot.2016.01.016)
Hart, S. N. et al. A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues. Drug Metab. Dispos. https://doi.org/10.1124/dmd.109.031831 (2010). (PMID: 10.1124/dmd.109.031831202282322879958)
Au-Bate, T. S. R., Au-Forbes, S. J. & Au-Callanan, A. Controlling electrospun polymer morphology for tissue engineering demonstrated using hepG2 cell line. JoVE https://doi.org/10.3791/61043 (2020). (PMID: 10.3791/61043)
Zuidema, J. M. et al. Oriented nanofibrous polymer scaffolds containing protein-loaded porous silicon generated by spray nebulization. Adv. Mater. 30, 1706785 (2018). (PMID: 10.1002/adma.201706785)
Hotaling, N. A., Bharti, K., Kriel, H. & Simon, C. G. DiameterJ: A validated open source nanofiber diameter measurement tool. Biomaterials 61, 327–338 (2015). (PMID: 26043061449234410.1016/j.biomaterials.2015.05.015)
Stalder, A. F. et al. Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf. A Physicochem. Eng. Asp. 364, 72–81 (2010). (PMID: 10.1016/j.colsurfa.2010.04.040)
Li, W. C., Ralphs, K. L. & Tosh, D. Isolation and culture of adult mouse hepatocytes. Methods Mol. Biol. 633, 185–196 (2010). (PMID: 2020462810.1007/978-1-59745-019-5_13) - Grant Information: MR/K017047/1 United Kingdom MRC_ Medical Research Council; MR/L012766/1 United Kingdom MRC_ Medical Research Council; MR/R015635/1 United Kingdom MRC_ Medical Research Council; MR/R015635/1 UK Regenerative Medicine Platform; MR/L022974/1 United Kingdom MRC_ Medical Research Council
- الرقم المعرف: EC 1.14.14.1 (Cytochrome P-450 CYP1A2)
- الموضوع: Date Created: 20210205 Date Completed: 20211110 Latest Revision: 20230322
- الموضوع: 20240829
- الرقم المعرف: PMC7862353
- الرقم المعرف: 10.1038/s41598-021-81761-z
- الرقم المعرف: 33542251
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.