Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Response of bacterial and fungal communities to high petroleum pollution in different soils.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Petroleum pollution of soils is a major environmental problem. Soil microorganisms can decompose a significant fraction of petroleum hydrocarbons in soil at low concentrations (1-5%). This characteristic can be used for soil remediation after oil pollution. Microbial community dynamics and functions are well studied in cases of moderate petroleum pollution, while cases with heavy soil pollution have received much less attention. We studied bacterial and fungal successions in three different soils with high petroleum contents (6 and 25%) in a laboratory experiment. The proportion of aliphatic and aromatic compounds decreased by 4-7% in samples with 6% pollution after 120 days of incubation but remained unchanged in samples with 25% hydrocarbons. The composition of the microbial community changed significantly in all cases. Oil pollution led to an increase in the relative abundance of bacteria such as Actinobacteria and the candidate TM7 phylum (Saccaribacteria) and to a decrease in that of Bacteroidetes. The gene abundance (number of OTUs) of oil-degrading bacteria (Rhodococcus sp., candidate class TM7-3 representative) became dominant in all soil samples, irrespective of the petroleum pollution level and soil type. The fungal communities in unpolluted soil samples differed more significantly than the bacterial communities. Nonmetric multidimensional scaling revealed that in the polluted soil, successions of fungal communities differed between soils, in contrast to bacterial communities. However, these successions showed similar trends: fungi capable of lignin and cellulose decomposition, e.g., from the genera Fusarium and Mortierella, were dominant during the incubation period.
    • References:
      Koshlaf, E. & Ball, S. Soil bioremediation approaches for petroleum hydrocarbon polluted environments. AIMS Microbiol. 3, 25–49 (2017). (PMID: 31294147660497710.3934/microbiol.2017.1.25)
      Margesin, R., Labbé, D., Schinner, F., Greer, C. W. & Whyte, L. G. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine soils. Appl. Environ. Microbiol. 69, 3085–3092 (2003). (PMID: 1278870216150910.1128/AEM.69.6.3085-3092.2003)
      Haritash, A. K. & Kaushik, C. P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater. 169, 1–15 (2009). (PMID: 1944244110.1016/j.jhazmat.2009.03.137)
      Mishra, S., Jyot, J., Kuhad, R. C. & Lal, B. In situ bioremediation potential of an oily sludge-degrading bacterial consortium. Curr. Microbiol. 43, 328–335 (2001). (PMID: 1168879610.1007/s002840010311)
      Hu, G., Li, J. & Zeng, G. Recent development in the treatment of oily sludge from petroleum industry: A review. J. Hazard. Mater. 261, 470–490 (2013). (PMID: 2397872210.1016/j.jhazmat.2013.07.069)
      Fan, M. Y., Xie, R. J. & Qin, G. Bioremediation of petroleum-contaminated soil by a combined system of biostimulation-bioaugmentation with yeast. Environ. Technol. 35, 391–399 (2014). (PMID: 2460087910.1080/09593330.2013.829504)
      Labud, V., Garcia, C. & Hernandez, T. Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil. Chemosphere 66, 1863–1871 (2007). (PMID: 1708396410.1016/j.chemosphere.2006.08.021)
      Abo-Elmagd, M., Soliman, H. A., Salman, K. A. & El-Masry, N. M. Radiological hazards of TENORM in the wasted petroleum pipes. J. Environ. Radioact. 101, 51–54 (2010). (PMID: 1978244410.1016/j.jenvrad.2009.08.016)
      Selivanovskaya, S. Y., Kuritsyn, I. N., Akhmetzyanova, L. G., Galitskaya, P. Y. & Solovjev, D. A. Use of biological activity index for determination of the oil polluted area meant for remediation. Neft. khozyaystvo - Oil Ind. 6, 102–103 (2012).
      Selivanovskaya, S. Y. & Galitskaya, P. Y. Ecotoxicological assessment of soil using the Bacillus pumilus contact test. Eur. J. Soil Biol. 47, 165–168 (2011). (PMID: 10.1016/j.ejsobi.2010.12.001)
      Lǎzǎroaie, M. M. Multiple responses of gram-positive and gram-negative bacteria to mixture of hydrocarbons. Braz. J. Microbiol. 41, 649–667 (2010). (PMID: 10.1590/S1517-83822010000300016)
      Zahir, Z., Seed, K. D. & Dennis, J. J. Isolation and characterization of novel organic solvent-tolerant bacteria. Extremophiles 10, 129–138 (2006). (PMID: 1623748310.1007/s00792-005-0483-y)
      Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997). (PMID: 911519410.1126/science.276.5313.734)
      Sikkema, J., De Bont, J. A. M. & Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59, 201–222 (1995). (PMID: 760340923936010.1128/mr.59.2.201-222.1995)
      Weber, F. J. & De Bont, J. A. M. Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim. Biophys. Acta - Rev. Biomembr. 1286, 225–245 (1996). (PMID: 10.1016/S0304-4157(96)00010-X)
      Chikere, C. B., Tekere, M. & Adeleke, R. Enhanced microbial hydrocarbon biodegradation as stimulated during field-scale landfarming of crude oil-impacted soil. Sustain. Chem. Pharm. 14, 1–11 (2019).
      Zhang, D. C., Mörtelmaier, C. & Margesin, R. Characterization of the bacterial archaeal diversity in hydrocarbon-contaminated soil. Sci. Total Environ. 421–422, 184–196 (2012). (PMID: 2238623210.1016/j.scitotenv.2012.01.043)
      Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103, 626–631 (2006). (PMID: 1640714810.1073/pnas.05075351031334650)
      Jiao, S. et al. Bacterial communities in oil contaminated soils: Biogeography and co-occurrence patterns. Soil Biol. Biochem. 98, 64–73 (2016). (PMID: 10.1016/j.soilbio.2016.04.005)
      Cho, C., Choi, S. Y., Luo, Z. W. & Lee, S. Y. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering. Biotechnol. Adv. 33, 1455–1466 (2015). (PMID: 2545019410.1016/j.biotechadv.2014.11.006)
      Chandra, S., Sharma, R., Singh, K. & Sharma, A. Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Ann. Microbiol. 63, 417–431 (2013). (PMID: 10.1007/s13213-012-0543-3)
      Varjani, S. J. & Upasani, V. N. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int. Biodeterior. Biodegrad. 120, 71–83 (2017). (PMID: 10.1016/j.ibiod.2017.02.006)
      Daccò, C. et al. Key fungal degradation patterns, enzymes and their applications for the removal of aliphatic hydrocarbons in polluted soils: A review. Int. Biodeterior. Biodegrad. 147, 1–11 (2020). (PMID: 10.1016/j.ibiod.2019.104866)
      Spormann, A. M. & Widdel, F. Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11, 85–105 (2000). (PMID: 1144024510.1023/A:1011122631799)
      Van Hamme, J. D., Singh, A. & Ward, O. P. Recent advances in petroleum microbiology. Microbiol. Mol. Biol. Rev. 67, 503–549 (2003). (PMID: 1466567530904810.1128/MMBR.67.4.503-549.2003)
      Widdel, F., Knittel, K. & Galushko, A. Anaerobic hydrocarbon-degrading microorganisms: An overview. Handb. Hydrocarb. Lipid Microbiol. https://doi.org/10.1007/978-3-540-77587-4_146 (2010). (PMID: 10.1007/978-3-540-77587-4_146)
      Rabus, R. et al. Anaerobic microbial degradation of hydrocarbons: From enzymatic reactions to the environment. J. Mol. Microbiol. Biotechnol. 26, 5–28 (2016). (PMID: 26960061)
      Lladó, S., Gràcia, E., Solanas, A. M. & Viñas, M. Fungal and bacterial microbial community assessment during bioremediation assays in an aged creosote-polluted soil. Soil Biol. Biochem. 67, 114–123 (2013). (PMID: 10.1016/j.soilbio.2013.08.010)
      Harms, H., Schlosser, D. & Wick, L. Y. Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nat. Rev. Microbiol. 9, 177–192 (2011). (PMID: 2129766910.1038/nrmicro2519)
      Jia, J. et al. The dynamic change of microbial communities in crude oil-contaminated soils from oil fields in China. Soil Sediment. Contam. 26, 171–183 (2017). (PMID: 10.1080/15320383.2017.1264923)
      Blagodatskaya, E. V., Blagodatsky, S. A., Anderson, T.-H. & Kuzyakov, Y. Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies. Appl. Soil Ecol. 37, 95–105 (2007). (PMID: 10.1016/j.apsoil.2007.05.002)
      Wang, J., Xiong, Z., Yan, X. & Kuzyakov, Y. Carbon budget by priming in a biochar-amended soil. Eur. J. Soil Biol. 76, 26–34 (2016). (PMID: 10.1016/j.ejsobi.2016.07.003)
      Subedi, R. et al. Chemically and biologically-mediated fertilizing value of manure-derived biochar. Sci. Total Environ. 550, 924–933 (2016). (PMID: 2685187810.1016/j.scitotenv.2016.01.160)
      Peng, M., Zi, X. & Wang, Q. Bacterial community diversity of oil-contaminated soils assessed by high throughput sequencing of 16s rRNA genes. Int. J. Environ. Res. Public Health 12, 12002–12015 (2015). (PMID: 26404329462695110.3390/ijerph121012002)
      Auti, A. M., Narwade, N. P., Deshpande, N. M. & Dhotre, D. P. Microbiome and imputed metagenome study of crude and refined petroleum-oil-contaminated soils: Potential for hydrocarbon degradation and plant-growth promotion. J. Biosci. 44, 1–16 (2019). (PMID: 10.1007/s12038-019-9936-9)
      Schreiter, S., Sandmann, M., Smalla, K. & Grosch, R. Soil type dependent rhizosphere competence and biocontrol of two bacterial inoculant strains and their effects on the rhizosphere microbial community of field-grown lettuce. PLoS ONE 9, 1–11 (2014). (PMID: 10.1371/journal.pone.0103726)
      Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017). (PMID: 2882417710.1038/nrmicro.2017.87)
      Sun, Q., Li, A., Li, M. & Hou, B. Effect of pH on biodiesel production and the microbial structure of glucose-fed activated sludge. Int. Biodeterior. Biodegrad. 104, 224–230 (2015). (PMID: 10.1016/j.ibiod.2015.06.003)
      Gao, C. Experiences of microbial enhanced oil recovery in Chinese oil fields. J. Pet. Sci. Eng. 166, 55–62 (2018). (PMID: 10.1016/j.petrol.2018.03.037)
      Towell, M. G. et al. Mineralisation of target hydrocarbons in three contaminated soils from former refinery facilities. Environ. Pollut. 159, 515–523 (2011). (PMID: 2109504910.1016/j.envpol.2010.10.015)
      Liu, Q., Tang, J., Gao, K., Gurav, R. & Giesy, J. P. Aerobic degradation of crude oil by microorganisms in soils from four geographic regions of China. Sci. Rep. 7, 1–12 (2017).
      Sutton, N. B. et al. Impact of long-term diesel contamination on soil microbial community structure. Appl. Environ. Microbiol. 79, 619–630 (2013). (PMID: 23144139355374910.1128/AEM.02747-12)
      Wang, X. B. et al. Degradation of petroleum hydrocarbons (C6–C40) and crude oil by a novel Dietzia strain. Bioresour. Technol. 102, 7755–7761 (2011). (PMID: 2171516210.1016/j.biortech.2011.06.009)
      Qiao, J., Zhang, C., Luo, S. & Chen, W. Bioremediation of highly contaminated oilfield soil: Bioaugmentation for enhancing aromatic compounds removal. Front. Environ. Sci. Eng. 8, 293–304 (2014). (PMID: 10.1007/s11783-013-0561-9)
      Jiang, Y. et al. Insights into the biodegradation of weathered hydrocarbons in contaminated soils by bioaugmentation and nutrient stimulation. Chemosphere 161, 300–307 (2016). (PMID: 27441989499161710.1016/j.chemosphere.2016.07.032)
      Liu, X. et al. Meat and bone meal as a novel biostimulation agent in hydrocarbon contaminated soils. Chemosphere 225, 574–578 (2019). (PMID: 3090165210.1016/j.chemosphere.2019.03.053)
      EPA. Technologies for Cleaning Up Contaminated Sites 1–5 (2019). https://www.epa.gov/remedytech .
      Quintella, C. M., Mata, A. M. T. & Lima, L. C. P. Overview of bioremediation with technology assessment and emphasis on fungal bioremediation of oil contaminated soils. J. Environ. Manage. 241, 156–166 (2019). (PMID: 3099926510.1016/j.jenvman.2019.04.019)
      Hara, A. et al. Cloning and functional analysis of alkB genes in Alcanivorax borkumensis SK2. Environ. Microbiol. 6, 191–197 (2004). (PMID: 1487120310.1046/j.1462-2920.2003.00550.x)
      Whyte, L. G. et al. Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531. Appl. Environ. Microbiol. 68, 5933–5942 (2002). (PMID: 1245081313440210.1128/AEM.68.12.5933-5942.2002)
      Sakai, Y., Maeng, J. H., Kato, N. & Tani, Y. Use of Long-chain n-Alkanes (C13–C44) by an Isolate Acinetobacter sp. M-l. Biosci. Biotechnol. Biochem. 58, 2128–2130 (1994). (PMID: 10.1271/bbb.58.2128)
      Aliakbari, E., Tebyanian, H. & Hassanshahian, M. Degradation of Alkanes in contaminated sites. Int. J. Adv. Biol. Biomed. Res. 2, 1620–1637 (2014).
      Cébron, A., Norini, M. P., Beguiristain, T. & Leyval, C. Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J. Microbiol. Methods 73, 148–159 (2008). (PMID: 1832911610.1016/j.mimet.2008.01.009)
      Sari, G. L., Trihadiningrum, Y. & Ni’matuzahroh. Petroleum hydrocarbon pollution in soil and surface water by public oil fields in Wonocolo sub-district, Indonesis. J. Ecol. Eng. 19, 184–193 (2018). (PMID: 10.12911/22998993/82800)
      Mardan, S., Gitipour, S. & Ali Abdoli, M. Pollution control caused by high levels of petroleum hydrocarbons in contaminated soils. Pet. Sci. Technol. 36, 705–711 (2018). (PMID: 10.1080/10916466.2018.1442857)
      Qi, Y. B., Wang, C. Y., Lv, C. Y., Lun, Z. M. & Zheng, C. G. Removal capacities of polycyclic aromatic hydrocarbons (PAHs) by a newly isolated strain from oilfield produced water. Int. J. Environ. Res. Public Health 14, 1–12 (2017). (PMID: 10.3390/ijerph14020215)
      Aske, N., Kallevik, H. & Sjöblom, J. Determination of saturate, aromatic, resin, and asphaltenic (SARA) components in crude oils by means of infrared and near-infrared spectroscopy. Energy Fuels 15, 1304–1312 (2001). (PMID: 10.1021/ef010088h)
      Minai-Tehrani, D., Rohanifar, P. & Azami, S. Assessment of bioremediation of aliphatic, aromatic, resin, and asphaltene fractions of oil-sludge-contaminated soil. Int. J. Environ. Sci. Technol. 12, 1253–1260 (2015). (PMID: 10.1007/s13762-014-0720-y)
      Varfolomeev, M. A. et al. Chemical evaluation and kinetics of Siberian, north regions of Russia and Republic of Tatarstan crude oils. Energy Sources Part A 38, 1031–1038 (2016). (PMID: 10.1080/15567036.2015.1107866)
      Varfolomeev, M. A., Galukhin, A., Nurgaliev, D. K. & Kok, M. V. Thermal decomposition of Tatarstan Ashal’cha heavy crude oil and its SARA fractions. Fuel 186, 122–127 (2016). (PMID: 10.1016/j.fuel.2016.08.042)
      Langarica-Fuentes, A., Handley, P. S., Houlden, A., Fox, G. & Robson, G. D. An investigation of the biodiversity of thermophilic and thermotolerant fungal species in composts using culture-based and molecular techniques. Fungal Ecol. 11, 132–144 (2014). (PMID: 10.1016/j.funeco.2014.05.007)
      Tang, J., Lu, X., Sun, Q. & Zhu, W. Aging effect of petroleum hydrocarbons in soil under different attenuation conditions. Agric. Ecosyst. Environ. 149, 109–117 (2012). (PMID: 10.1016/j.agee.2011.12.020)
      Sangwan, P., Kovac, S., Davis, K. E. R., Sait, M. & Janssen, P. H. Detection and cultivation of soil verrucomicrobia. Appl. Environ. Microbiol. 71, 8402–8410 (2005). (PMID: 16332828131744410.1128/AEM.71.12.8402-8410.2005)
      Hermans, S. M. et al. Bacteria as emerging Indicators of soil condition. Appl. Environ. Microbiol. 83, 1–13 (2017). (PMID: 10.1128/AEM.02826-16)
      Antônio Marcondes de Souza, J., Maria Carareto Alves, L., de Mello Varani, A. & Gertrudes de Macedo Lemos, E. Erratum to Chapters 5 and 19. In The Prokaryotes (ed. Rosenberg, E.) 1–24 (Springer, Berlin, 2014).
      Gkarmiri, K. et al. Identifying the active microbiome associated with roots and rhizosphere soil of oilseed rape. Appl. Environ. Microbiol. 83, 1–14 (2017). (PMID: 10.1128/AEM.01938-17)
      Delgado-Balbuena, L. et al. Changes in the bacterial community structure of remediated anthracene-contaminated soils. PLoS ONE 11, 1–28 (2016). (PMID: 10.1371/journal.pone.0160991)
      Barnard, R. L., Osborne, C. A. & Firestone, M. K. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J. 7, 2229–2241 (2013). (PMID: 23823489380625810.1038/ismej.2013.104)
      Morais, D., Pylro, V., Clark, I. M., Hirsch, P. R. & Tótola, M. R. Responses of microbial community from tropical pristine coastal soil to crude oil contamination. PeerJ 4, 1–21 (2016). (PMID: 10.7717/peerj.1733)
      Tamames, J., Abellán, J. J., Pignatelli, M., Camacho, A. & Moya, A. Environmental distribution of prokaryotic taxa. BMC Microbiol. 10, 85 (2010). (PMID: 20307274285035110.1186/1471-2180-10-85)
      Bodelier, P. L. E. Toward understanding, managing, and protecting microbial ecosystems. Front. Microbiol. 2, 1–8 (2011). (PMID: 10.3389/fmicb.2011.00080)
      Mueller, R. C. et al. Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest. ISME J. 8, 1548–1550 (2014). (PMID: 24451208406939510.1038/ismej.2013.253)
      Hazard, C. et al. The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale. ISME J. 7, 498–508 (2013). (PMID: 2309640110.1038/ismej.2012.127)
      Sun, S., Li, S., Avera, B. N., Strahm, B. D. & Badgley, B. D. Soil bacterial and fungal communities show distinct recovery patterns during forest ecosystem restoration. Appl. Environ. Microbiol. 83, 1–14 (2017). (PMID: 10.1128/AEM.00966-17)
      Vinale, F. et al. Trichoderma-plant-pathogen interactions. Soil Biol. Biochem. 40, 1–10 (2008). (PMID: 10.1016/j.soilbio.2007.07.002)
      Klaubauf, S. et al. Molecular diversity of fungal communities in agricultural soils from Lower Austria. Fungal Divers. 44, 65–75 (2010). (PMID: 23794962368830210.1007/s13225-010-0053-1)
      Yu, P. et al. Root type and soil phosphate determine the taxonomic landscape of colonizing fungi and the transcriptome of field-grown maize roots. New Phytol. 217, 1240–1253 (2018). (PMID: 2915444110.1111/nph.14893)
      Zhou, H. et al. Fungal proliferation and hydrocarbon removal during biostimulation of oily sludge with high total petroleum hydrocarbon. Environ. Sci. Pollut. Res. 26, 33192–33201 (2019). (PMID: 10.1007/s11356-019-06432-z)
      Edel-Hermann, V., Gautheron, N., Mounier, A. & Steinberg, C. Fusarium diversity in soil using a specific molecular approach and a cultural approach. J. Microbiol. Methods 111, 64–71 (2015). (PMID: 2565577810.1016/j.mimet.2015.01.026)
      Abdel-Azeem, A. M., Abdel-Azeem, M. A., Darwish, A. G., Nafady, N. A. & Ibrahim, N. A. Fusarium: Biodiversity, Ecological Significances, and Industrial Applications. In Recent Advancement in White Biotechnology Through Fungi 201–261 (Springer, Berlin, 2019). (PMID: 10.1007/978-3-030-10480-1_6)
      Carini, P. et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 1–6 (2016). (PMID: 10.1038/nmicrobiol.2016.242)
      Quintans-Júnior, L. et al. African journal of biotechnology. Afr. J. Biotechnol. 9, 6566–6572 (2002).
      Park, J. K., Hong, S. W. & Chang, W. S. Degradation of polycyclic aromatic hydrocarbons by ultrasonic irradiation. Environ. Technol. 21, 1317–1323 (2000). (PMID: 10.1080/09593332108618162)
      Kim, J. S. & Crowley, D. E. Microbial diversity in natural asphalts of the Rancho La Brea Tar Pits. Appl. Environ. Microbiol. 73, 4579–4591 (2007). (PMID: 17416692193282810.1128/AEM.01372-06)
      da Silva, F. S. P. et al. Unexplored Brazilian oceanic island host high salt tolerant biosurfactant-producing bacterial strains. Extremophiles 19, 561–572 (2015). (PMID: 2570101810.1007/s00792-015-0740-7)
      Dörr de Quadros, P. et al. Oily sludge stimulates microbial activity and changes microbial structure in a landfarming soil. Int. Biodeterior. Biodegrad. 115, 90–101 (2016). (PMID: 10.1016/j.ibiod.2016.07.018)
      Luo, C., Xie, S., Sun, W., Li, X. & Cupples, A. M. Identification of a novel toluene-degrading bacterium from the candidate phylum TM7, as determined by DNA stable isotope probing. Appl. Environ. Microbiol. 75, 4644–4647 (2009). (PMID: 19447956270481710.1128/AEM.00283-09)
      Xie, S., Sun, W., Luo, C. & Cupples, A. M. Novel aerobic benzene degrading microorganisms identified in three soils by stable isotope probing. Biodegradation 22, 71–81 (2011). (PMID: 2054930810.1007/s10532-010-9377-5)
      Calabrese, E. J. & Kostecki, P. T. Principles and Practices for Petroleum Contaminated Soils. Principles and Practices for Petroleum Contaminated Soils 1–672 (CRC Press, Boca Raton, 2019). (PMID: 10.1201/9780203742198)
      Cowton, M. Polar microbiology: The ecology, biodiversity and bioremediation potential of microorganisms in extremely cold environments. Biodiversity 17, 74–75 (2016). (PMID: 10.1080/14888386.2016.1174957)
      Weiss, M., Bauer, R., Sampaio, J. P. & Oberwinkler, F. 12 Tremellomycetes and related groups. Syst. Evol. https://doi.org/10.1007/978-3-642-55318-9_12 (2014). (PMID: 10.1007/978-3-642-55318-9_12)
      Uspensky, V. A., Rodionova, K. F., Gorskaya, A. I., & Shishkina, A. P. Guide to the Analysis of Bitumen and Scattered Organic Matter of Rocks (In Russ) 1–8 (“Nedra” Publ., 1966).
      Khusnutdinov, I. S., Bukharov, S. V. & Goncharova, I. N. Determination of Tar-Asphalt Substances: Methodological Guidelines 1–44 (Kazan. Gos. Tekhnol. Univ., 2006).
      Muyzer, G., de Waal, E. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain. Appl. Environ. Microbiol. 59, 695–700 (1993). (PMID: 768318320217610.1128/aem.59.3.695-700.1993)
      Liu, C. M. et al. FungiQuant: a broad-coverage fungal quantitative real-time PCR assay. BMC Microbiol. 12, 1–11 (2012).
      Kohno, T., Sugimoto, Y., Sei, K. & Mori, K. Design of PCR primers and gene probes alkane-degrading bacteria. Microbes Environ. 17, 114–121 (2002). (PMID: 10.1264/jsme2.17.114)
      Cébron, A., Norini, M., Beguiristain, T. & Leyval, C. Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J. Microb. Methods. 73, 148–159 (2008). (PMID: 10.1016/j.mimet.2008.01.009)
      Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010). (PMID: 20383131315657310.1038/nmeth.f.303)
      Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007). (PMID: 17586664195098210.1128/AEM.00062-07)
      Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011). (PMID: 10.14806/ej.17.1.200)
      Magoc, T. & Salzberg, S. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21), 2957–2963 (2011). (PMID: 21903629319857310.1093/bioinformatics/btr507)
      Cole, J. R. et al. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucl. Acids Res. 42, D633–D642 (2014). (PMID: 2428836810.1093/nar/gkt1244)
      Koetschan, C. et al. The ITS2 Database III: Sequences and structures for phylogeny. Nucl. Acids Res. 38, D275–D279 (2010). (PMID: 1992012210.1093/nar/gkp966)
      R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2019).
      Takada, Y. On the mathematical theory of communication. Jpn. J. Psychol. 25, 110–117 (1954). (PMID: 10.4992/jjpsy.25.110)
      Simpson, E. H. Measurement of diversity. Nature 163, 688–688 (1949). (PMID: 10.1038/163688a0)
      Faith, D. P., Minchin, P. R. & Belbin, L. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69, 57–68 (1987). (PMID: 10.1007/BF00038687)
      Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993). (PMID: 10.1111/j.1442-9993.1993.tb00438.x)
    • الرقم المعرف:
      0 (Soil Pollutants)
    • الموضوع:
      Date Created: 20210109 Date Completed: 20210809 Latest Revision: 20230127
    • الموضوع:
      20230128
    • الرقم المعرف:
      PMC7794381
    • الرقم المعرف:
      10.1038/s41598-020-80631-4
    • الرقم المعرف:
      33420266