Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The Coxiella burnetii effector protein CaeB modulates endoplasmatic reticulum (ER) stress signalling and is required for efficient replication in Galleria mellonella.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Hindawi Country of Publication: India NLM ID: 100883691 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1462-5822 (Electronic) Linking ISSN: 14625814 NLM ISO Abbreviation: Cell Microbiol Subsets: MEDLINE
    • بيانات النشر:
      Publication: 2022- : Mumbai : Hindawi
      Original Publication: Oxford : Wiley-Blackwell, c1999-
    • الموضوع:
    • نبذة مختصرة :
      The obligate intracellular pathogen Coxiella burnetii is the causative agent of the zoonosis Q fever. C. burnetii infection can have severe outcomes due to the development of chronic infection. To establish and maintain an infection, C. burnetii depends on a functional type IVB secretion system (T4BSS) and, thus, on the translocation of effector proteins into the host cell. Here, we showed that the C. burnetii T4BSS effector protein CaeB targets the conserved endoplasmatic reticulum (ER) stress sensor IRE1 during ER stress in mammalian and plant cells. CaeB-induced upregulation of IRE1 RNase activity was essential for CaeB-mediated inhibition of ER stress-induced cell death. Our data reveal a novel role for CaeB in ER stress signalling modulation and demonstrate that CaeB is involved in pathogenicity in vivo. Furthermore, we provide evidence that C. burnetii infection leads to modulation of the ER stress sensors IRE1 and PERK, but not ATF6 during ER stress. While the upregulation of the RNase activity of IRE1 during ER stress depends on CaeB, modulation of PERK is CaeB independent, suggesting that C. burnetii encodes several factors influencing ER stress during infection.
      (© 2020 The Authors. Cellular Microbiology published by John Wiley & Sons Ltd.)
    • References:
      Agbor, T. A., & McCormick, B. A. (2011). Salmonella effectors: Important players modulating host cell function during infection. Cellular Microbiology, 13, 1858-1869.
      Alegado, R. A., Campbell, M. C., Chen, W. C., Slutz, S. S., & Tan, M. W. (2003). Characterization of mediators of microbial virulence and innate immunity using the Caenorhabditis elegans host-pathogen model. Cellular Microbiology, 5, 435-444.
      Almanza, A., Carlesso, A., Chintha, C., Creedican, S., Doultsinos, D., Leuzzi, B., … Samali, A. (2019). Endoplasmic reticulum stress signalling - From basic mechanisms to clinical applications. The FEBS journal, 286, 241-278.
      Balint-Kurti, P. (2019). The plant hypersensitive response: Concepts, control and consequences. Molecular Plant Pathology, 20, 1163-1178.
      Beare, P. A., Gilk, S. D., Larson, C. L., Hill, J., Stead, C. M., Omsland, A., … Heinzen, R. A. (2011). Dot/Icm type IVB secretion system requirements for Coxiella burnetii growth in human macrophages. mBio, 2, e00175-11.
      Beare, P. A., & Heinzen, R. A. (2014). Gene inactivation in Coxiella burnetii. Methods in Molecular Biology, 1197, 329-345.
      Beare, P. A., Jeffrey, B. M., Long, C. M., Martens, C. M., & Heinzen, R. A. (2018). Genetic mechanisms of Coxiella burnetii lipopolysaccharide phase variation. PLoS Pathogens, 14, e1006922.
      Block, A., Guo, M., Li, G., Elowsky, C., Clemente, T. E., & Alfano, J. R. (2010). The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development and suppresses plant innate immunity. Cellular Microbiology, 12, 318-330.
      Botham, C. M., Wandler, A. M., & Guillemin, K. (2008). A transgenic Drosophila model demonstrates that the Helicobacter pylori CagA protein functions as a eukaryotic Gab adaptor. PLoS Pathogens, 4, e1000064.
      Brann, K. R., Fullerton, M. S., & Voth, D. E. (2020). Coxiella burnetii requires host eukaryotic initiation factor 2alpha activity for efficient intracellular replication. Infection and Immunity, 88, e00096-20.
      Carey, K. L., Newton, H. J., Lührmann, A., & Roy, C. R. (2011). The Coxiella burnetii Dot/Icm system delivers a unique repertoire of type IV effectors into host cells and is required for intracellular replication. PLoS Pathogens, 7, e1002056.
      Celli, J., & Tsolis, R. M. (2015). Bacteria, the endoplasmic reticulum and the unfolded protein response: Friends or foes? Nature Reviews Microbiology, 13, 71-82.
      Chen, Y., & Brandizzi, F. (2013). IRE1: ER stress sensor and cell fate executor. Trends in Cell Biology, 23, 547-555.
      Cross, B. C., Bond, P. J., Sadowski, P. G., Jha, B. K., Zak, J., Goodman, J. M., … Harding, H. P. (2012). The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. Proceedings of the National Academy of Sciences of the United States of America, 109, E869-E878.
      Dangl, J. L., & Jones, J. D. (2001). Plant pathogens and integrated defence responses to infection. Nature, 411, 826-833.
      de Jong, M. F., Starr, T., Winter, M. G., den Hartigh, A. B., Child, R., Knodler, L. A., … Tsolis, R. M. (2013). Sensing of bacterial type IV secretion via the unfolded protein response. mBio, 4, e00418-00412.
      Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicologic Pathology, 35, 495-516.
      Fielden, L. F., Moffatt, J. H., Kang, Y., Baker, M. J., Khoo, C. A., Roy, C. R., … Newton, H. J. (2017). A farnesylated Coxiella burnetii effector forms a multimeric complex at the mitochondrial outer membrane during infection. Infection and Immunity, 85, e01046-16.
      Frederick, R. D., Thilmony, R. L., Sessa, G., & Martin, G. B. (1998). Recognition specificity for the bacterial avirulence protein AvrPto is determined by Thr-204 in the activation loop of the tomato Pto kinase. Molecular Cell, 2, 241-245.
      Friedrich, A., Pechstein, J., Berens, C., & Lührmann, A. (2017). Modulation of host cell apoptotic pathways by intracellular pathogens. Current Opinion in Microbiology, 35, 88-99.
      Ghosh, S., & O'Connor, T. J. (2017). Beyond paralogs: The multiple layers of redundancy in bacterial pathogenesis. Frontiers in Cellular and Infection Microbiology, 7, 467.
      Graham, J. G., Winchell, C. G., Sharma, U. M., & Voth, D. E. (2015). Identification of ElpA, a Coxiella burnetii pathotype-specific Dot/Icm type IV secretion system substrate. Infection and Immunity, 83, 1190-1198.
      Haze, K., Yoshida, H., Yanagi, H., Yura, T., & Mori, K. (1999). Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Molecular Biology of the Cell, 10, 3787-3799.
      Hempstead, A. D., & Isberg, R. R. (2015). Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response. Proceedings of the National Academy of Sciences of the United States of America, 112, E6790-E6797.
      Hetz, C. (2012). The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. Nature Reviews Molecular Cell Biology, 13, 89-102.
      Hetz, C., & Papa, F. R. (2018). The unfolded protein response and cell fate control. Molecular Cell, 69, 169-181.
      Jamir, Y., Guo, M., Oh, H. S., Petnicki-Ocwieja, T., Chen, S., Tang, X., … Alfano, J. R. (2004). Identification of Pseudomonas syringae type III effectors that can suppress programmed cell death in plants and yeast. The Plant Journal, 37, 554-565.
      Justis, A. V., Hansen, B., Beare, P. A., King, K. B., Heinzen, R. A., & Gilk, S. D. (2017). Interactions between the Coxiella burnetii parasitophorous vacuole and the endoplasmic reticulum involve the host protein ORP1L. Cellular Microbiology, 19, e12637.
      Karimi, M., Inze, D., & Depicker, A. (2002). GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science, 7, 193-195.
      Kawai-Yamada, M., Jin, L., Yoshinaga, K., Hirata, A., & Uchimiya, H. (2001). Mammalian Bax-induced plant cell death can be down-regulated by overexpression of Arabidopsis Bax Inhibitor-1 (AtBI-1). Proceedings of the National Academy of Sciences of the United States of America, 98, 12295-12300.
      Klingenbeck, L., Eckart, R. A., Berens, C., & Lührmann, A. (2013). The Coxiella burnetii type IV secretion system substrate CaeB inhibits intrinsic apoptosis at the mitochondrial level. Cellular Microbiology, 15, 675-687.
      Kohler, L. J., Reed Sh, C., Sarraf, S. A., Arteaga, D. D., Newton, H. J., & Roy, C. R. (2016). Effector protein Cig2 decreases host tolerance of infection by directing constitutive fusion of autophagosomes with the Coxiella-containing vacuole. mBio, 7, e01127-16.
      Kohler, L. J., & Roy, C. R. (2015). Biogenesis of the lysosome-derived vacuole containing Coxiella burnetii. Microbes and Infection, 17, 766-771.
      Korner, C. J., Du, X., Vollmer, M. E., & Pajerowska-Mukhtar, K. M. (2015). Endoplasmic reticulum stress signaling in plant immunity - At the crossroad of life and death. International Journal of Molecular Sciences, 16, 26582-26598.
      Kraner, M. E., Muller, C., & Sonnewald, U. (2017). Comparative proteomic profiling of the choline transporter-like1 (CHER1) mutant provides insights into plasmodesmata composition of fully developed Arabidopsis thaliana leaves. The Plant Journal, 92, 696-709.
      Lacomme, C., & Santa Cruz, S. (1999). Bax-induced cell death in tobacco is similar to the hypersensitive response. Proceedings of the National Academy of Sciences of the United States of America, 96, 7956-7961.
      Larson, C. L., Beare, P. A., Howe, D., & Heinzen, R. A. (2013). Coxiella burnetii effector protein subverts clathrin-mediated vesicular trafficking for pathogen vacuole biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 110, E4770-E4779.
      Larson, C. L., Martinez, E., Beare, P. A., Jeffrey, B., Heinzen, R. A., & Bonazzi, M. (2016). Right on Q: Genetics begin to unravel Coxiella burnetii host cell interactions. Future Microbiology, 11, 919-939.
      Latomanski, E. A., Newton, P., Khoo, C. A., & Newton, H. J. (2016). The effector Cig57 hijacks FCHO-mediated vesicular trafficking to facilitate intracellular replication of Coxiella burnetii. PLoS Pathogens, 12, e1006101.
      Lawen, A. (2003). Apoptosis - An introduction. BioEssays, 25, 888-896.
      Lee, A. H., Iwakoshi, N. N., & Glimcher, L. H. (2003). XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Molecular and Cellular Biology, 23, 7448-7459.
      Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25, 402-408.
      Lührmann, A., Nogueira, C. V., Carey, K. L., & Roy, C. R. (2010). Inhibition of pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein. Proceedings of the National Academy of Sciences of the United States of America, 107, 18997-19001.
      Lührmann, A., & Roy, C. R. (2007). Coxiella burnetii inhibits activation of host cell apoptosis through a mechanism that involves preventing cytochrome c release from mitochondria. Infection and Immunity, 75, 5282-5289.
      Martin, G. B. (1999). Functional analysis of plant disease resistance genes and their downstream effectors. Current Opinion in Plant Biology, 2, 273-279.
      Martinez, E., Allombert, J., Cantet, F., Lakhani, A., Yandrapalli, N., Neyret, A., … Bonazzi, M. (2016). Coxiella burnetii effector CvpB modulates phosphoinositide metabolism for optimal vacuole development. Proceedings of the National Academy of Sciences of the United States of America, 113, E3260-E3269.
      Maurin, M., & Raoult, D. (1999). Q fever. Clinical Microbiology Reviews, 12, 518-553.
      Mishiba, K., Nagashima, Y., Suzuki, E., Hayashi, N., Ogata, Y., Shimada, Y., & Koizumi, N. (2013). Defects in IRE1 enhance cell death and fail to degrade mRNAs encoding secretory pathway proteins in the Arabidopsis unfolded protein response. Proceedings of the National Academy of Sciences of the United States of America, 110, 5713-5718.
      Nagashima, Y., Mishiba, K., Suzuki, E., Shimada, Y., Iwata, Y., & Koizumi, N. (2011). Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor. Scientific Reports, 1, 29.
      Nelson, B. K., Cai, X., & Nebenfuhr, A. (2007). A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. The Plant Journal, 51, 1126-1136.
      Norville, I. H., Hartley, M. G., Martinez, E., Cantet, F., Bonazzi, M., & Atkins, T. P. (2014). Galleria mellonella as an alternative model of Coxiella burnetii infection. Microbiology, 160, 1175-1181.
      Oliver, F. J., de la Rubia, G., Rolli, V., Ruiz-Ruiz, M. C., de Murcia, G., & Murcia, J. M. (1998). Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. Journal of Biological Chemistry, 273, 33533-33539.
      Pontier, D., Balague, C., & Roby, D. (1998). The hypersensitive response. A programmed cell death associated with plant resistance. Comptes Rendus de l'Académie des Sciences. Série III, 321, 721-734.
      Popa, C., Coll, N. S., Valls, M., & Sessa, G. (2016). Yeast as a heterologous model system to uncover type III effector function. PLoS Pathogens, 12, e1005360.
      Robinson, K. S., & Aw, R. (2016). The commonalities in bacterial effector inhibition of apoptosis. Trends in Microbiology, 24, 665-680.
      Rodriguez-Escudero, M., Cid, V. J., Molina, M., Schulze-Lührmann, J., Lührmann, A., & Rodriguez-Escudero, I. (2016). Studying Coxiella burnetii type IV substrates in the yeast Saccharomyces cerevisiae: Focus on subcellular localization and protein aggregation. PLoS One, 11, e0148032.
      Ron, D., & Hubbard, S. R. (2008). How IRE1 reacts to ER stress. Cell, 132, 24-26.
      Sano, R., & Reed, J. C. (2013). ER stress-induced cell death mechanisms. Biochimica et Biophysica Acta, 1833, 3460-3470.
      Schäfer, W., Eckart, R. A., Schmid, B., Cagkoylu, H., Hof, K., Muller, Y. A., … Lührmann, A. (2017). Nuclear trafficking of the anti-apoptotic Coxiella burnetii effector protein AnkG requires binding to p32 and Importin-alpha1. Cellular Microbiology, 19, e12634.
      Schulze-Luehrmann, J., Eckart, R. A., Olke, M., Saftig, P., Liebler-Tenorio, E., & Lührmann, A. (2016). LAMP proteins account for the maturation delay during the establishment of the Coxiella burnetii-containing vacuole. Cellular Microbiology, 18, 181-194.
      Sessa, G., D'Ascenzo, M., & Martin, G. B. (2000). The major site of the pti1 kinase phosphorylated by the pto kinase is located in the activation domain and is required for pto-pti1 physical interaction. European Journal of Biochemistry, 267, 171-178.
      Siggers, K. A., & Lesser, C. F. (2008). The yeast Saccharomyces cerevisiae: A versatile model system for the identification and characterization of bacterial virulence proteins. Cell Host & Microbe, 4, 8-15.
      Silhavy, D., Molnar, A., Lucioli, A., Szittya, G., Hornyik, C., Tavazza, M., & Burgyan, J. (2002). A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. The EMBO Journal, 21, 3070-3080.
      Smith, J. A., Khan, M., Magnani, D. D., Harms, J. S., Durward, M., Radhakrishnan, G. K., … Splitter, G. A. (2013). Brucella induces an unfolded protein response via TcpB that supports intracellular replication in macrophages. PLoS Pathogens, 9, e1003785.
      Takatsuki, A., Arima, K., & Tamura, G. (1971). Tunicamycin, a new antibiotic. I. Isolation and characterization of tunicamycin. Journal of Antibiotics (Tokyo), 24, 215-223.
      Tateda, C., Ozaki, R., Onodera, Y., Takahashi, Y., Yamaguchi, K., Berberich, T., … Kusano, T. (2008). NtbZIP60, an endoplasmic reticulum-localized transcription factor, plays a role in the defense response against bacterial pathogens in Nicotiana tabacum. Journal of Plant Research, 121, 603-611.
      Treacy-Abarca, S., & Mukherjee, S. (2015). Legionella suppresses the host unfolded protein response via multiple mechanisms. Nature Communications, 6, 7887.
      Tsai, A. Y., English, B. C., & Tsolis, R. M. (2019). Hostile takeover: Hijacking of endoplasmic reticulum function by T4SS and T3SS effectors creates a niche for intracellular pathogens. Microbiology Spectrum, 7, PSIB-0027-2019.
      Urra, H., Dufey, E., Lisbona, F., Rojas-Rivera, D., & Hetz, C. (2013). When ER stress reaches a dead end. Biochimica et Biophysica Acta, 1833, 3507-3517.
      Üstun, S., Muller, P., Palmisano, R., Hensel, M., & Bornke, F. (2012). SseF, a type III effector protein from the mammalian pathogen Salmonella enterica, requires resistance-gene-mediated signalling to activate cell death in the model plant Nicotiana benthamiana. The New Phytologist, 194, 1046-1060.
      van Vliet, A. R., Verfaillie, T., & Agostinis, P. (2014). New functions of mitochondria associated membranes in cellular signaling. Biochimica et Biophysica Acta, 1843, 2253-2262.
      Voth, D. E., Beare, P. A., Howe, D., Sharma, U. M., Samoilis, G., Cockrell, D. C., … Heinzen, R. A. (2011). The Coxiella burnetii cryptic plasmid is enriched in genes encoding type IV secretion system substrates. Journal of Bacteriology, 193, 1493-1503.
      Wallqvist, A., Wang, H., Zavaljevski, N., Memisevic, V., Kwon, K., Pieper, R., … Reifman, J. (2017). Mechanisms of action of Coxiella burnetii effectors inferred from host-pathogen protein interactions. PLoS One, 12, e0188071.
      Walter, F., Schmid, J., Dussmann, H., Concannon, C. G., & Prehn, J. H. (2015). Imaging of single cell responses to ER stress indicates that the relative dynamics of IRE1/XBP1 and PERK/ATF4 signalling rather than a switch between signalling branches determine cell survival. Cell Death and Differentiation, 22, 1502-1516.
      Walter, P., & Ron, D. (2011). The unfolded protein response: From stress pathway to homeostatic regulation. Science, 334, 1081-1086.
      Wan, S., & Jiang, L. (2016). Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in plants. Protoplasma, 253, 753-764.
      Weber, M. M., Chen, C., Rowin, K., Mertens, K., Galvan, G., Zhi, H., … Samuel, J. E. (2013). Identification of Coxiella burnetii type IV secretion substrates required for intracellular replication and Coxiella-containing vacuole formation. Journal of Bacteriology, 195, 3914-3924.
      Weber, M. M., Faris, R., van Schaik, E. J., McLachlan, J. T., Wright, W. U., Tellez, A., … Samuel, J. E. (2016). The type IV secretion system effector protein CirA stimulates the GTPase activity of RhoA and is required for virulence in a mouse model of Coxiella burnetii infection. Infection and Immunity, 84, 2524-2533.
      Wu, H., Ng, B. S., & Thibault, G. (2014). Endoplasmic reticulum stress response in yeast and humans. Bioscience Reports, 34, e00118.
      Yamamoto, K., Sato, T., Matsui, T., Sato, M., Okada, T., Yoshida, H., … Mori, K. (2007). Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Developmental Cell, 13, 365-376.
      Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., & Mori, K. (2001). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell, 107, 881-891.
      Zha, H., Fisk, H. A., Yaffe, M. P., Mahajan, N., Herman, B., & Reed, J. C. (1996). Structure-function comparisons of the proapoptotic protein Bax in yeast and mammalian cells. Molecular and Cellular Biology, 16, 6494-6508.
      Zhang, L., Chen, H., Brandizzi, F., Verchot, J., & Wang, A. (2015). The UPR branch IRE1-bZIP60 in plants plays an essential role in viral infection and is complementary to the only UPR pathway in yeast. PLoS Genetics, 11, e1005164.
      Zhang, L., Zhang, C., & Wang, A. (2016). Divergence and conservation of the major UPR branch IRE1-bZIP signaling pathway across eukaryotes. Scientific Reports, 6, 27362.
      Zhou, J., Loh, Y. T., Bressan, R. A., & Martin, G. B. (1995). The tomato gene Pti1 encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell, 83, 925-935.
    • Contributed Indexing:
      Keywords: Coxiella burnetii; ER stress; Nicotiana benthamiana; apoptosis; effector proteins; type IV secretion system
    • الرقم المعرف:
      0 (Bacterial Proteins)
    • الموضوع:
      Date Created: 20201223 Date Completed: 20211210 Latest Revision: 20211214
    • الموضوع:
      20240829
    • الرقم المعرف:
      10.1111/cmi.13305
    • الرقم المعرف:
      33355405