Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Effortful control is associated with executive attention: A computational study.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Ossola P;Ossola P;Ossola P; Antonucci C; Antonucci C; Meehan KB; Meehan KB; Meehan KB; Cain NM; Cain NM; Ferrari M; Ferrari M; Soliani A; Soliani A; Marchesi C; Marchesi C; Marchesi C; Clarkin JF; Clarkin JF; Sambataro F; Sambataro F; De Panfilis C; De Panfilis C; De Panfilis C
- المصدر:
Journal of personality [J Pers] 2021 Aug; Vol. 89 (4), pp. 774-785. Date of Electronic Publication: 2021 Jan 16.- نوع النشر :
Journal Article- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Blackwell Publishers Country of Publication: United States NLM ID: 2985194R Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1467-6494 (Electronic) Linking ISSN: 00223506 NLM ISO Abbreviation: J Pers Subsets: MEDLINE
- بيانات النشر: Publication: 1998- : Malden, Ma. : Blackwell Publishers
Original Publication: Durham, N. C. : Duke University Press, c1946- - الموضوع:
- نبذة مختصرة : Introduction: Effortful control (EC) is the self-regulatory aspect of temperament that is thought to reflect the efficiency of executive attention (EA). Findings on relationship between EC and performance on EA tasks among adults are still contradictory. This study used a computational approach to clarify whether greater self-reported EC reflects better EA.
Methods: Four hundred twenty-seven healthy subjects completed the Adult Temperament Questionnaires and the Attention Network Task-revised, a conflict resolution task that gauges EA as the flanker effect (FE), that is, the difference in performances between incongruent and congruent trials. Here we also employed a drift-diffusion model in which parameters reflecting the actual decisional process (drift rate) and the extra-decisional time are extracted for congruent and incongruent trials.
Results: EC was not correlated with the FE computed with the classic approach, but correlated positively with drift rate for the incongruent trials, even when controlling for the drift rate in the congruent condition and the extra-decisional time in the incongruent condition.
Conclusion: This study demonstrates an association between self-reported EC and EA among adults. Specifically, EC is not associated with overall response facilitation but specifically with a greater ability to make goal-oriented decisions when facing conflicting information.
(© 2021 Wiley Periodicals LLC.) - References: Ayduk, O., Zayas, V., Downey, G., Cole, A. B., Shoda, Y., & Mischel, W. (2008). Rejection sensitivity and executive control: Joint predictors of borderline personality features. Journal of Research in Personality, 42, 151-168. https://doi.org/10.1016/j.jrp.2007.04.002.
Bennett, D., Silverstein, S. M., & Niv, Y. (2019). The two cultures of computational psychiatry. JAMA Psychiatry, 76, 563-564. https://doi.org/10.1001/jamapsychiatry.2019.0231.
Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006). The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks. Psychological Review, 113, 700-765. https://doi.org/10.1037/0033-295X.113.4.700.
Bridgett, D. J., Oddi, K. B., Laake, L. M., Murdock, K. W., & Bachman, M. N. (2013). Integrating and differentiating aspects of self-regulation: Effortful control, executive functioning, and links to negative affectivity. Emotion, 13, 47-63. https://doi.org/10.1037/a0029536.
Browning, M., Carter, C. S., Chatham, C., Den Ouden, H., Gillan, C. M., Baker, J. T., Chekroud, A. M., Cools, R., Dayan, P., Gold, J., Goldstein, R. Z., Hartley, C. A., Kepecs, A., Lawson, R. P., Mourao-Miranda, J., Phillips, M. L., Pizzagalli, D. A., Powers, A., Rindskopf, D., … Paulus, M. (2020). Realizing the clinical potential of computational psychiatry: Report from the Banbury Center Meeting, February 2019. Biological Psychiatry, 88, e5-e10. https://doi.org/10.1016/j.biopsych.2019.12.026.
Cain, N. M., De Panfilis, C., Meehan, K. B., & Clarkin, J. F. (2013). Assessing interpersonal profiles associated with varying levels of effortful control. Journal of Personality Assessment, 95, 640-644. https://doi.org/10.1080/00223891.2013.821073.
Cain, N. M., Meehan, K. B., Roche, M. J., Clarkin, J. F., & De Panfilis, C. (2018). Effortful control and interpersonal behavior in daily life. Journal of Personality Assessment, 101, 315-325. https://doi.org/10.1080/00223891.2018.1441151.
Casey, B. J., Tottenham, N., & Fossella, J. (2002). Clinical, imaging lesion and genetic approaches toward a model of cognitive control. Developmental Psychobiology, 40, 237-254. https://doi.org/10.1002/dev.10030.
Chang, F., & Burns, B. M. (2005). Attention in preschoolers. Associations with effortful control and motivation. Child Development, 76, 247-263. https://doi.org/10.1111/j.1467-8624.2005.00842.x.
Claes, L., Bijttebier, P., Van Den Eynde, F., Mitchell, J. E., Faber, R., de Zwaan, M., & Mueller, A. (2010). Emotional reactivity and self-regulation in relation to compulsive buying. Personality and Individual Differences, 49, 526-530. https://doi.org/10.1016/j.paid.2010.05.020.
De Panfilis, C., Antonucci, C., Meehan, K. B., Cain, N. M., Soliani, A., Marchesi, C., Clarkin, J. F., & Sambataro, F. (2019). Facial emotion recognition and social-cognitive correlates of narcissistic features. Journal of Personality Disorders, 33, 433-449. https://doi.org/10.1521/pedi_2018_32_350.
De Panfilis, C., Meehan, K. B., Cain, N. M., & Clarkin, J. F. (2013). The relationship between effortful control, current psychopathology, and interpersonal difficulties in adulthood. Comprehensive Psychiatry, 54, 454-461. https://doi.org/10.1016/j.comppsych.2012.12.015.
De Panfilis, C., Meehan, K. B., Cain, N. M., & Clarkin, J. F. (2016). Effortful control, rejection sensitivity, and borderline personality disorders features in adulthood. Journal of Personality Disorders, 30, 595-612. https://doi.org/10.1521/pedi_2015_29_226.
Derryberry, D., & Rothbart, M. K. (1997). Reactive and effortful processes in the organization of temperament. Developmental Psychopathology, 9, 633-652. https://doi.org/10.1017/s0954579497001375.
Di Rosa, E., Schiff, S., Cagnolati, F., & Mapelli, D. (2015). Motivation-cognition interaction: How feedback processing changes in healthy ageing and in Parkinson's disease. Aging Clinical and Experimental Research, 27, 911-920. https://doi.org/10.1007/s40520-015-0358-8.
Dillon, D. G., Wiecki, T., Pechtel, P., Webb, C., Goer, F., Murray, L., Trivedi, M., Fava, M., McGrath, P. J., Weissman, M., Parsey, R., Kurian, B., Adams, P., Carmody, T., Weyandt, S., Shores-Wilson, K., Toups, M., McInnis, M., Oquendo, M. A., … Pizzagalli, D. A. (2015). A computational analyses of flanker interference in depression. Psychological Medicine, 45, 2333-2344. https://doi.org/10.1017/S0033291715000276.
Eisenberg, N., Smith, C. L., & Spinrad, T. L. (2011). Effortful control: Relations with emotion regulation, adjustment, and socialization in childhood. In K. D. Vohs & R. F. Baumeister (Eds.), Handbook of self-regulation: Research, theory, and applications (2nd ed., pp. 263-283). Guilford.
Evans, D. E., & Rothbart, M. K. (2007). Developing a model for adult temperament. Journal of Research in Personality, 41, 868-888. https://doi.org/10.1016/j.jrp.2006.11.002.
Fan, J., Gu, X., Guise, K. G., Liu, X., Fossella, J., Wang, H., & Posner, M. I. (2009). Testing the behavioral interaction and integration of attentional networks. Brain and Cognition, 70, 209-220. https://doi.org/10.1016/j.bandc.2009.02.002.
Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I., & Posner, M. I. (2005). The activation of attentional networks. Neuroimage, 26, 471-479. https://doi.org/10.1016/j.neuroimage.2005.02.004.
Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscienece, 14, 340-347. https://doi.org/10.1162/089892902317361886.
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175-191. https://doi.org/10.3758/bf03193146.
Fosco, G. M., Caruthers, A. S., & Dishion, T. J. (2012). A six-year predictive test of adolescent family relationship quality and effortful control pathways to emerging adult social and emotional health. Journal of Family Psychology, 26, 565-575. https://doi.org/10.1037/a0028873.
Fosco, W. D., Kofler, M. J., Alderson, R. M., Tarle, S. J., Raiker, J. S., & Sarver, D. E. (2019). Inhibitory control and information processing in ADHD: Comparing the dual task and performance adjustment hypotheses. Journal of Abnormal Child Psychology, 47, 961-974. https://doi.org/10.1007/s10802-018-0504-9.
Gerardi-Caulton, G. (2000). Sensitivity to spatial conflict and the development of self-regulation in children 24-36 months of age. Developmental Science, 3, 397-404. https://doi.org/10.1111/1467-7687.00134.
Huys, Q. J., Maia, T. V., & Frank, M. J. (2016). Computational psychiatry as a bridge from neuroscience to clinical applications. Nature Neuroscience, 19, 404-413. https://doi.org/10.1038/nn.4238.
Kanske, P., & Kotz, S. A. (2012). Effortful control, depression, and anxiety correlate with the influence of emotion on executive attentional control. Biological Psychology, 91, 88-95. https://doi.org/10.1016/j.biopsycho.2012.04.007.
Kim-Spoon, J., Dearer-Deckard, K., Calkins, S. D., King-Casas, B., & Bell, M. A. (2019). Commonality between executive functioning and effortful control related to adjustment. Journal of Applied Developmental Psychology, 60, 47-55. https://doi.org/10.1016/j.appdev.2018.10.004.
Lefferts, W. K., DeBlois, J. P., White, C. N., Day, T. A., Heffernan, K. S., & Brutsaert, T. D. (2019). Changes in cognitive function and latent processes of decision-making during incremental ascent to high altitude. Physiology & Behavior, 201, 139-145. https://doi.org/10.1016/j.physbeh.2019.01.002.
Lerche, V., & Voss, A. (2016). Model complexity in diffusion modeling: Benefits of making the model more parsimonious. Frontiers in Psychology, 7, 1324. https://doi.org/10.3389/fpsyg.2016.01324.
Lerche, V., & Voss, A. (2017). Retest reliability of the parameters of the Ratcliff diffusion model. Psychological Research Psychologische Forschung, 81, 629-652. https://doi.org/10.1007/s00426-016-0770-5.
Lerche, V., Voss, A., & Nagler, M. (2017). How many trials are required for parameter estimation in diffusion modeling? A comparison of different optimization criteria. Behavior Research Methods, 49, 513-537. https://doi.org/10.3758/s13428-016-0740-2.
MacLeod, J. W., Lawrence, M. A., McConnell, M. M., Eskes, G. A., Klein, E. R., & Shore, D. I. (2010). Appraising the ANT: Psychometric and theoretical considerations of the Attention Network Test. Neuropsychology, 24, 637-651. https://doi.org/10.1037/a0019803.
Marchetti, I., Shumake, J., Grahek, I., & Koster, E. H. W. (2018). Temperamental factors in remitted depression: The role of effortful control and attentional mechanisms. Journal of Affective Disorders, 235, 499-505. https://doi.org/10.1016/j.jad.2018.04.064.
Markett, S., Reuter, M., Montag, C., Voigt, G., Lachmann, B., Rudorf, S., Elger, C. E., & Weber, B. (2014). Assessing the function of the fronto-parietal attention network: Insights from restin-state fMRI and the Attentional Network Test. Human Brain Mapping, 35, 1700-1709. https://doi.org/10.1002/hbm.22285.
McVay, J. C., & Kane, M. J. (2012). Why does working memory capacity predict variation in reading comprehension? On the influence of mind wandering and executive attention. Journal of Experimental Psychology General, 141, 302-320. https://doi.org/10.1037/a0025250.
Meehan, K. B., De Panfilis, C., Cain, N. M., Antonucci, C., Soliani, A., Clarkin, J. F., & Sambataro, F. (2017). Facial emotion recognition and borderline personality pathology. Psychiatry Research, 255, 347-354. https://doi.org/10.1016/j.psychres.2017.05.042.
Meehan, K. B., De Panfilis, C., Cain, N. M., & Clarkin, J. F. (2013). Effortful control and externalizing problems in young adults. Personality and Individual Differences, 55, 553-558. https://doi.org/10.1016/j.paid.2013.04.019.
Merkt, J., Singmann, H., Bodenburg, S., Goossens-Merkt, H., Kappes, A., Wendt, M., & Gawrilow, C. (2013). Flanker performance in female college students with ADHD: A diffusion model analysis. Attention Deficit and Hyperactivity Disorders, 5, 321-341. https://doi.org/10.1007/s12402-013-0110-1.
Metin, B., Roeyers, H., Wiersema, J. R., van der Meere, J. J., Thompson, M., & Sonuga-Barke, E. (2013). ADHD performance reflects inefficient but not impulsive information processing: A diffusion model analysis. Neuropsychology, 27, 193-200. https://doi.org/10.1037/a0031533.
Mueller, C. J., White, C. N., & Kuchinke, L. (2017). Electrophysiological correlates of the drift diffusion model in visual word recognition. Human Brain Mapping, 38, 5616-5627. https://doi.org/10.1002/hbm.23753.
Nigg, J. T. (2017). Annual research review: On the relations among self-regulation, self-control, executive functioning, effortful control, impulsivity, risk-taking, and inhibition for developmental psychopathology. Journal of Child Psychology and Psychiatry, 58, 361-383. https://doi.org/10.1111/jcpp.12675.
NIMH Research Domain Criteria, Rev. 05-18-2012. (2020). http://www.nimh.nih.gov/research-priorities/rdoc/index.shtml.
Noble, W. S. (2009). How does multiple testing correction work? Nature Biotechnology, 27, 1135-1137. https://doi.org/10.1038/nbt1209-1135.
O'Callaghan, C., Hall, J. M., Tomassini, A., Muller, A. J., Walpola, I. C., Moustafa, A. A., Shine, J. M., & Lewis, S. J. G. (2017). Visual hallucinations are characterized by impaired sensory evidence accumulation: Insights from hierarchical drift diffusion modeling in Parkinson's disease. Biological Psychiatry Cognitive Neuroscience and Neuroimaging, 2, 680-688. https://doi.org/10.1016/j.bpsc.2017.04.007.
Posner, M. I., & Rothbart, M. K. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology, 58, 1-23. https://doi.org/10.1146/annurev.psych.58.110405.085516.
Posner, M. I., & Rothbart, M. K. (2009). Toward a physical basis of attention and self-regulation. Physics of Life Review, 6, 103-120. https://doi.org/10.1016/j.plrev.2009.02.001.
Posner, M. I., & Rothbart, M. K. (2018). Temperament and brain networks of attention. Philosophical Transaction of the Royal Society of London, Series B Biological Sciences, 373, 20170254. https://doi.org/10.1098/rstb.2017.0254.
Posner, M. I., Rothbart, M. K., & Tang, Y. (2013). Developing self-regulation in early childhood. Trends in Neuroscience and Education, 2, 107-110. https://doi.org/10.1016/j.tine.2013.09.001.
Posner, M. I., Rothbart, M. K., Vizueta, N., Levy, K. N., Evans, D. E., Thomas, K. M., & Clarkin, J. F. (2002). Attentional mechanisms of borderline personality disorder. Proceedings of the National Academy of Science of the United States of America, 99, 16366-16370. https://doi.org/10.1073/pnas.252644699.
Price, R. B., Brown, V., & Siegle, G. J. (2019). Computational modeling applied to the dot-probe task yields improved reliability and mechanistic insights. Biological Psychiatry, 85, 606-612. https://doi.org/10.1016/j.biopsych.2018.09.022.
Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20, 873-922. https://doi.org/10.1162/neco.2008.12-06-420.
Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: Current issues and history. Trends in Cognitive Science, 20, 260-281. https://doi.org/10.1016/j.tics.2016.01.007.
Rothbart, M. K., & Bates, J. E. (2006). Temperament. In N. Eisenberg, W. Damon, & R. M. Lerner (Eds.), Handbook of child psychology: Social, emotional, and personality development (pp. 99-166). John Wiley & Sons Inc.
Rothbart, M. K., Ellis, L. K., & Posner, M. I. (2011). Temperament and self-regulation. In K D. Vohs & R. F. Baumeister (Eds.), Handbook of self-regulation (2nd ed., pp. 441-460). Guilford.
Rothbart, M. K., Ellis, L. K., Rueda, M. R., & Posner, M. I. (2003). Developing mechanisms of temperamental effortful control. Journal of Personality, 71, 1113-1143. https://doi.org/10.1111/1467-6494.7106009.
Rothbart, M. K., & Rueda, M. R. (2005). The development of effortful control. In U. Mayr, E. Awh, & S. W. Keele (Eds.), Developing individuality in the human brain: A tribute to Michael I. Posner (pp. 167-188). American Psychological Association.
Siegle, G. J., Thompson, W., Carter, C. S., Steinhauer, S. R., & Thase, M. E. (2007). Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: Related and independent features. Biological Psychiatry, 61, 198-209. https://doi.org/10.1016/j.biopsych.2006.05.048.
Simonds, J., Kieras, J. E., Rueda, M. R., & Rothbart, M. K. (2007). Effortful control, executive attention, and emotion regulation in 7-10-year-old children. Cognitive Development, 22, 474-488. https://doi.org/10.1016/j.cogdev.2007.08.009.
Sleuwaegen, E., Hulstijn, W., Claes, L., Houben, M., Gandhi, A., Berens, A., & Sabbe, B. (2018). Are emotional action tendencies and attentional bias related to temperament dimensions in patients with borderline personality disorder? Psychiatry Research, 266, 247-252. https://doi.org/10.1016/j.psychres.2018.03.004.
Tang, Y. Y., & Posner, M. I. (2009). Attention training and attention state training. Trends in Cognitive Sciences, 13, 222-227. https://doi.org/10.1016/j.tics.2009.01.009.
Visintin, E., De Panfilis, C., Antonucci, C., Capecci, C., Marchesi, C., & Sambataro, F. (2015). Parsing the intrinsic networks underlying attention: A resting state study. Behavioural Brain Research, 278, 315-322. https://doi.org/10.1016/j.bbr.2014.10.002.
Voss, A., Nagler, M., & Lerche, V. (2013). Diffusion models in experimental psychology: A practical introduction. Experimental Psychology, 60, 385-402. https://doi.org/10.1027/1618-3169/a000218.
Voss, A., & Voss, J. (2007). Fast-dm: A free program for efficient diffusion model analysis. Behavior Research Methods, 39, 767-775. https://doi.org/10.3758/bf03192967.
Voss, A., Voss, J., & Lerche, V. (2015). Assessing cognitive processes with diffusion model analyses: A tutorial based on fast-dm-30. Frontiers in Psychology, 6, 336. https://doi.org/10.3389/fpsyg.2015.00336.
Wang, Y. F., Cui, Q., Liu, F., Huo, Y. J., Lu, F. M., Chen, H., & Chen, H. F. (2014). A new method for computing attention network scores and relationships between attention networks. PLoS ONE, 9, e89733. https://doi.org/10.1371/journal.pone.0089733.
White, C. N., Ratcliff, R., & Starns, J. J. (2011). Diffusion models of the flanker task: Discrete versus gradual attentional selection. Cognitive Psychology, 63, 210-238. https://doi.org/10.1016/j.cogpsych.2011.08.001.
White, C. N., Servant, M., & Logan, G. D. (2018). Testing the validity of conflict drift-diffusion models for use in estimating cognitive processes: A parameter-recovery study. Psychonomic Bullettin and Review, 25, 286-301. https://doi.org/10.3758/s13423-017-1271-2.
Wiecki, T., Sofer, I., & Frank, M. J. (2013). HDDM: Hierarchical Bayesian estimation of the drift-diffusion model in Python. Frontiers in Neuroinformatics, 7, 14. https://doi.org/10.3389/fninf.2013.00014.
Xiao, M., Ge, H., Khundrakpam, B. S., Xu, J., Bezgin, G., Leng, Y., Zhao, L., Tang, Y., Ge, X., Jeon, S., Xu, W., Evans, A. C., & Liu, S. (2016). Attention performance measured by attention network test is correlated with global and regional efficiency of structural brain networks. Frontiers in Behavioral Neuroscience, 10, 194. https://doi.org/10.3389/fnbeh.2016.00194. - Contributed Indexing: Keywords: drift diffusion model; effortful control; executive attention; self-regulation; temperament
- الموضوع: Date Created: 20201220 Date Completed: 20211028 Latest Revision: 20211028
- الموضوع: 20231215
- الرقم المعرف: 10.1111/jopy.12614
- الرقم المعرف: 33341948
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.