Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Bioaugmentation: possible scenarios due to application of bacterial preparations for remediation of oil-contaminated soil.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Kluwer Academic Publishers Country of Publication: Netherlands NLM ID: 8903118 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-2983 (Electronic) Linking ISSN: 02694042 NLM ISO Abbreviation: Environ Geochem Health Subsets: MEDLINE
    • بيانات النشر:
      Publication: 1999- : Dordrecht : Kluwer Academic Publishers
      Original Publication: Kew, Surrey : Science and Technology Letters, 1985-
    • الموضوع:
    • نبذة مختصرة :
      Although bioaugmentation is known as effective and environmentally friendly method increasing removal of hydrocarbons from oil-contaminated soil, it sometimes fails in soil restoration and disturbs the ecological state of soil. We studied possible scenarios of the introduction of oil-degrading bacteria into oil-contaminated podzolic soil assessing the environmental safety of different bacterial preparations in a long-term field experiment. Integral indicators characterizing the state of biocenosis included biological activity of soil and aboveground biomass of grasses. It has been established that bacterial preparations can have both positive and negative effects on the ecological state of soil and oil biodegradation. Of the five bacterial preparations studied, one had a pronounced positive effect on soil biological activity and oil mineralization processes. Two preparations did not accelerate oil biodegradation and were characterized by a weaker positive effect or even a lack of influence. Two more bacterial preparations had a significant negative impact on soil biological properties. These preparations slowed oil mineralization in soil. Both positive and negative effects of bacterial preparations were observed only during the first two years after their application. All preparations were not effective during the latter stages of long-term remediation processes. The results indicate that successful application of bioaugmentation for the restoration of oil-contaminated soil requires testing of environmental safety of bacterial preparations in a long-term field experiments prior to any treatment processes.
    • References:
      Adams, G. O., Fufeyin, P. T., Okoro, S. E., & Ehinomen, I. (2015). Bioremediation, biostimulation and bioaugmentation: A review. International Journal of Environmental Bioremediation and Biodegradation, 3(1), 28–39. (PMID: 10.12691/ijebb-3-1-5)
      Alef, K. (1995). Soil Respiration. In K. Alef & P. Nannipieri (Eds.), Methods in soil microbiology and biochemistry (pp. 214–215). San Diego: Academic Press Inc.
      Alekhin, V. G., Fakhrutdinov, A. I., Malyshkina, L. A., Sitnikov, A. V., Emtsov, V. T., & Khotyanovich, A. V. (1999). The comparative effectiveness of the destruction of petroleum products by various biopreparation at different levels contamination of peat. Biological Resources and Environmental Management, 3, 96–106. (In Russian).
      Al-Othman, R., Al-Bader, M., De La Roche, A., Al-Mumin, M., Sarahney, H. (2018). The remediation of oil contaminated soil in Kuwait. In: Proceedings of the 4th World Congress on New Technologies (NewTech'18). Paper No. ICEPR 148. https://doi.org/10.11159/icepr18.148.
      Al-Sayegh, A., Al-Wahaibi, Ya., Al-Bahry, S., Elshafie, A., Al-Bemani, A., & Joshi, S. (2015). Microbial enhanced heavy crude oil recovery through biodegradation using bacterial isolates from an omani oil field. Microbial Cell Factories, 14, 141. (PMID: 10.1186/s12934-015-0330-5)
      Ambrazaitienė, D., Žukauskaitė, A., Jakubauskaitė, V., Reikaitė, R., Zubrickaitė, M., & Karčauskienė, D. (2013). Biodegradation activity in the soil contaminated with oil products. Zemdirbyste-Agriculture, 100(3), 235–242. https://doi.org/10.13080/z-a.2013.100.030. (PMID: 10.13080/z-a.2013.100.030)
      Arinushkina, E. V. (1970). Manual on chemical analysis of soils. Moscow: Publishing House of Moscow State University. (In Russian).
      Ayotamuno, M. J., Kogbara, R. B., Ogaj, S. O. T., & Probert, S. D. (2006). Bioremidiation of a crude-oil polluted agricultural-soil at Port Harcourt, Nigeria. Applied energy, 83, 1249–1257. (PMID: 10.1016/j.apenergy.2006.01.003)
      Baek, K.-H., Kim, H.-S., Oh, H.-M., Yoon, B.-D., Kim, J., & Lee, I.-S. (2004). Effects of crude oil, oil components, and bioremediation on plant growth. Toxic/Hazardous Substances and Environmental Engineering, 39(9), 2465–2472. (PMID: 10.1081/ESE-200026309)
      Baek, K. H., Yoon, B. D., Kim, B. H., Cho, D. H., Lee, I. S., Oh, H. M., & Kim, H. S. (2007). Monitoring of microbial diversity and activity during bioremediation of crude oil-contaminated soil with different treatments. Journal of Microbiology and Biotechnology, 17, 67–73.
      Baker, J. M. (1970). The effects of oils on plants. Environmental Pollution, 1, 27–44. (PMID: 10.1016/0013-9327(70)90004-2)
      Barathi, S., & Vasudevan, N. (2001). Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil. Environment International, 26(5–6), 413–416. (PMID: 10.1016/S0160-4120(01)00021-6)
      Bardgett, R. D., & Van Der Putten, W. H. (2014). Belowground biodiversity and ecosystem functioning. Nature, 515(7528), 505–511. https://doi.org/10.1038/nature13855. (PMID: 10.1038/nature13855)
      Bodelier, P. L. E. (2011). Toward understanding, managing, and protecting microbial ecosystems. Frontiers in Microbiology, 2(80), 1–8. https://doi.org/10.3389/fmicb.2011.00080. (PMID: 10.3389/fmicb.2011.00080)
      Bona, C., de MendonçaRezende, I., de Oliveira Santos, G., & de Souza, L. A. (2011). Effect of soil contaminated by diesel oil on the germination of seeds and the growth of Schinus terebinthifolius Raddi (Anacardiaceae) seedlings. Brazilian Archives of Biology and Technology, 54(6), 1379–1387. (PMID: 10.1590/S1516-89132011000600025)
      Brzeszcz, J., Kapusta, P., Steliga, T., & Turkiewicz, A. (2020). Hydrocarbon removal by two differently developed microbial inoculants and comparing their actions with biostimulation treatment. Molecules, 25(3), 661. https://doi.org/10.3390/molecules25030661. (PMID: 10.3390/molecules25030661)
      Chorom, M., Sharifi, H. S., & Motamedi, H. (2010). Bioremediation of a crude oil—polluted soil by application of fertilizers. Iranian Journal of Environmental Health Science and Engineering, 7(4), 319–326.
      Escalas, A., Hale, L., Voordeckers, J. W., Yang, Y., Firestone, M. K., Alvarez-Cohen, L., & Zhou, J. (2019). Microbial functional diversity: From concepts to applications. Ecology and Evolution, 9(20), 12000–12016. https://doi.org/10.1002/ece3.5670. (PMID: 10.1002/ece3.5670)
      Franzluebbers, A. J. (2016). Should soil testing services measure soil biological activity? Agricultural and Environmental Letters, 1(1), 1–5. https://doi.org/10.2134/ael2015.11.0009. (PMID: 10.2134/ael2015.11.0009)
      Fritt-Rasmussen, J., Erland, P. (2013). Remediation of oil-contaminated soil in Greenland. In: Proceedings of the 10th international symposium on cold regions development: Planning for sustainable cold regions, 105–116.
      Graj, W., Lisiecki, P., Szulc, A., Chrzanowski, L., & Wojtera-Kwiczor, J. (2013). Bioaugmentation with petroleum-degrading consortia has a selective growth-promoting impact on crop plants germinated in diesel oil-contaminated soil. Water Air Soil Pollution, 224(9), 1–15. (PMID: 10.1007/s11270-013-1676-0)
      Jorgensen, K. S., Puustinen, J., & Suortti, A.-M. (2000). Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles. Environment Pollution, 107(2), 245–254. (PMID: 10.1016/S0269-7491(99)00144-X)
      Kabirov, R. R., Kireeva, N. A., Kabirov, T. R., Dubovik, I. E., Yakupova, A. B., & Safiullina, L. M. (2012). Assessment of the biological activity of oil-contaminated soils using an integral indicator. Soil science, 2, 184. (In Russian).
      Kazieva, A. A., & Melyakina, E. I. (2014). Comparative evaluation of various doses of a biopreparation for the purification of oil-contaminated soils. Bulletin of the Astrakhan State Technical University, 2(58), 54–58. (In Russian).
      Korshunova, T. Yu., Chetverikov, S. P., & Loginov, O. N. (2016). Prospects for the use of a consortium of hydrocarbon-oxidizing microorganisms for the purification of oil-contaminated soil in the Far North. Theoretical and Applied Ecology, 1, 88–94. (In Russian).
      Ławniczak, Ł, Woźniak-Karczewska, M., Loibner, A. P., Heipieper, H. J., & Chrzanowski, Ł. (2020). Microbial degradation of hydrocarbons-basic principles for bioremediation: A review. Molecules, 25(4), 856. (PMID: 10.3390/molecules25040856)
      Maletic, S., Dalmacija, B., & Roncevic, S. (2013). Petroleum hydrocarbon biodegradability in soil—implications for bioremediation. In V. Kutcherov & A. Kolesnikov (Eds.), Hydrocarbon: InTechOpen (pp. 43–64). Sweden: Royal Institute of Technology.
      Mazlova, E. A., Herrera, L. A., & Eremina, N. V. (2014). The use of the biopreparation biol in the bioremediation of oil-contaminated soils and sludges. Environmental Protection in the Oil and Gas Sector, 9, 28–33.
      Mazurkin, P. M., & Mikhailova, S. I. (2010). Prediction of hay yield from improved hayfields. The Successes of Modern Natural Science, 11, 37–46. (In Russian).
      Nemergut, D. R., Schmidt, S. K., Fukami, T., O’Neill, S. P., Bilinski, T. M., Stanish, L. F., et al. (2013). Patterns and processes of microbial community assembly. Microbiology and Molecular Biology Reviews, 77, 342–356. (PMID: 10.1128/MMBR.00051-12)
      Pacwa-Płociniczak, M., Czapla, J., Płociniczak, T., & Piotrowska-Seget, Z. (2019). The effect of bioaugmentation of petroleum-contaminated soil with Rhodococcus erythropolis strains on removal of petroleum from soil. Ecotoxicology and Environmental Safety, 169, 615–622. (PMID: 10.1016/j.ecoenv.2018.11.081)
      Paramonova, I. E., Kravchenko, N. L., Suyunova, A. B., Bezrodnov, M. A., Talzhanov, N. A., & Balpanov, D. C. (2010). The destruction of petroleum hydrocarbons by biopreparations depending on the type of soil and various levels of oil pollution. Biotechnology. Theory and Practice, 4, 54–63. (In Russian).
      Plaza, G., Ulfig, K., Worsztynowicz, A., Malina, G., Kreminska, B., & Brigmon, R. L. (2005). Respirometry for assessing the biodegradation of petroleum hydrocarbons. Environmental Technology, 26, 161–169. (PMID: 10.1080/09593332608618569)
      Pleshakova, E. V. (2011). Introduction of oil-oxidizing microorganisms into contaminated soil: the problems and perspectives. Izvestiya of Saratov University New Series Series Chemistry Biology Ecology, 11(2), 102–111. (In Russian).
      Pleshakova, E. V., Dubrovskaya, E. V., & Turkovskaya, O. V. (2008). Efficiencies of introduction of an oil-oxidizing Dietzia maris and stimulation of natural microbial communities in remediation of polluted soil. Applied Biochemistry and Microbiology, 44(4), 389–395. (PMID: 10.1134/S0003683808040091)
      Polyak, Y. M., Bakina, L. G., Chugunova, M. V., Mayachkina, N. V., Gerasimov, A. O., & Bure, V. M. (2018). Effect of remediation strategies on biological activity of oil-contaminated soil—A field study. International Biodeterioration and Biodegradation, 126, 57–68. (PMID: 10.1016/j.ibiod.2017.10.004)
      Polyak, Y., Bakina, L., Mayachkina, N., & Polyak, M. (2020). The possible role of toxigenic fungi in ecotoxicity of two contrasting oil-contaminated soils—A field study. Ecotoxicology and Environmental Safety, 202, 110959. https://doi.org/10.1016/j.ecoenv.2020.110959. (PMID: 10.1016/j.ecoenv.2020.110959)
      Popoola, B. M., & Olanbiwonninu, A. A. (2019). Biotreatment of crude oil contaminated soil. Microbiology Research Journal International, 27(4), 1–9. (PMID: 10.9734/mrji/2019/v27i430106)
      Rogozina, E. A., Morgunov, P. A., Timergazina, I. F., & Shapiro, A. I. (2015). On the issue of cleanup of oil contaminated soil with hydrocarbon-oxidizing microorganisms remaining in soil. Exploration Prospect and protection of mineral resources, 1, 65–69. (In Russian).
      Rusin, M., Gospodarek, J., & Nadgórska-Socha, A. (2015). The effect of petroleum-derived substances on the growth and chemical composition of Vicia faba L. Polish Journal of Environmental Studies, 24, 2157–2166. (PMID: 10.15244/pjoes/41378)
      Ryan, M. G., & Law, B. E. (2005). Interpreting, measuring, and modeling soil respiration. Biogeochemistry, 73, 3–27. https://doi.org/10.1007/s10533-004-5167-7. (PMID: 10.1007/s10533-004-5167-7)
      Ryazanova, L. G., Provorchenko, A. V., & Gorbunov, I. V. (2013). Fundamentals of statistical analysis of the results of research in horticulture. Кrasnodar: Кuban State Agrarian University. (In Russian).
      Smith, M. J., Flowers, T. H., Duncan, H. J., & Alder, J. (2006). Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues. Environmental Pollution, 141, 519–525. (PMID: 10.1016/j.envpol.2005.08.061)
      Sokolov, S. N., & Khadaev, I. R. (2017). Influence of biological products on the reduction of the residual concentration of oil hydrocarbons in soils. International Research Journal, 6(60), 131–136. (In Russian).
      Sun, J., Cheng, G. W., & Li, W. P. (2013). Meta-analysis of relationships between environmental factors and aboveground biomass in the alpine grassland on the Tibetan Plateau. Biogeosciences, 10, 1707–1715. (PMID: 10.5194/bg-10-1707-2013)
      Van Hamme, J. D., Singh, A., & Ward, O. P. (2003). Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews, 67(4), 503–549. (PMID: 10.1128/MMBR.67.4.503-549.2003)
      Vineetha, V., Shibu, K. (2012). Bioremediation of oil contaminated soil. In: International Conference on Green Technologies (ICGT), 99–102.
      Wu, M., Wu, J., Zhang, X., & Ye, X. (2019). Effect of bioaugmentation and biostimulation on hydrocarbon degradation and microbial community composition in petroleum-contaminated loessal soil. Chemosphere, 237, 124456. https://doi.org/10.1016/j.chemosphere.2019.124456. (PMID: 10.1016/j.chemosphere.2019.124456)
      Xu, X., Liu, W., Tian, S., Wang, W., Qi, Q., Jiang, P., et al. (2018). Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: A perspective analysis. Front. Microbiol., 9, 2885. https://doi.org/10.3389/fmicb.2018.02885. (PMID: 10.3389/fmicb.2018.02885)
      Yankevich, M. I., Khadeeva, V. V., & Murygina, V. P. (2015). Soil bioremediation: yesterday, today, tomorrow. Biosphere, 7(2), 199–208. (In Russian).
      Zhan, Ya., Tao, X., Ma, L.-A., & Jiang, T. (2018). Bioremediation of oil contaminated soil. Open Access Library Journal, 5(1), 1–6.
      Zhao, X., Hu, S., Dong, J., Ren, M., Zhang, X., Dong, K., & Wang, C. (2019). Effects of spring fire and slope on the aboveground biomass, and organic C and N dynamics in a semi-arid grassland of northern China. Journal of Arid Land, 11, 267–279. (PMID: 10.1007/s40333-019-0052-3)
    • Contributed Indexing:
      Keywords: Biological activity of soil; Oil biodegradation; Oil pollution; Phytotoxicity; Soil microbiota
    • الرقم المعرف:
      0 (Hydrocarbons)
      0 (Petroleum)
      0 (Soil)
      0 (Soil Pollutants)
    • الموضوع:
      Date Created: 20201028 Date Completed: 20210622 Latest Revision: 20210622
    • الموضوع:
      20240628
    • الرقم المعرف:
      10.1007/s10653-020-00755-4
    • الرقم المعرف:
      33113031