Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Dual COX and 5-LOX inhibition by clerodane diterpenes from seeds of Polyalthia longifolia (Sonn.) Thwaites.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Natural metabolites with their specific bioactivities are being considered as a potential source of materials for pharmacological studies. In this study, we successfully isolated and identified five known clerodane diterpenes, namely 16-oxo-cleroda-3,13(14)E-dien-15-oic acid (1), 16-hydroxy-cleroda-3,13-dien-15-oic acid (2), 16-hydroxy-cleroda-4(18),13-dien-16,15-olide (3), 3α,16α-dihydroxy-cleroda-4(18),13(14)Z-dien-15,16-olide (4), and 16α-hydroxy-cleroda-3,13(14)Z-dien-15,16-olide (5) from the methanolic extract of seeds of Polyalthia longifolia. Initially, all the isolated metabolites were investigated for COX-1, COX-2, and 5-LOX inhibitory activities using the standard inhibitory kits. Of which, compounds 3, 4, and 5 exhibited to be potent COX-1, COX-2, and 5-LOX inhibitors with the IC 50 values similar or lower to those of the reference drugs. To understand the underlying mechanism, these compounds were subjected to molecular docking on COX-1, COX-2, and 5-LOX proteins. Interestingly, the in silico study results were in high accordance with in vitro studies where compounds 3, 4, and 5 hits assumed interactions and binding pattern comparable to that of reference drugs (indomethacin and diclofenac), as a co-crystallized ligand explaining their remarkable dual (COX/LOX) inhibitor actions. Taken together, our findings demonstrated that compounds 3, 4, and 5 functioned as dual inhibitors of COX/5-LOX and can contribute to the development of novel, more effective anti-inflammatory drugs with minimal side-effects.
    • References:
      Kutil, Z. et al. Impact of wines and wine constituents on cyclooxygenase-1, cyclooxygenase-2, and 5-lipoxygenase catalytic activity. Mediat. Inflamm. 2014, 1–8 (2014). (PMID: 10.1155/2014/178931)
      Pairet, M. & Engelhardt, G. Distinct isoforms (COX-1 and COX-2) of cyclooxygenase: possible physiological and therapeutic implications. Fund. Clin. Pharmacol. 10, 1–15 (1996). (PMID: 10.1111/j.1472-8206.1996.tb00144.x)
      Assumpção, T. C. F., Alvarenga, P. H., Ribeiro, J. M. C., Andersen, J. F. & Francischetti, I. M. B. Dipetalodipin, a novel multifunctional salivary lipocalin that inhibits platelet aggregation, vasoconstriction, and angiogenesis through unique binding specificity for TXA 2, PGF 2α, and 15(S)-HETE. J. Biol. Chem. 285, 39001–39012 (2010). (PMID: 10.1074/jbc.M110.152835)
      Innes, J. K. & Calder, P. C. Omega-6 fatty acids and inflammation. Prostaglandins Leukot. Essent. Fat. Acids 132, 41–48 (2018). (PMID: 10.1016/j.plefa.2018.03.004)
      Fosslien, E. Adverse effects of nonsteroidal anti-inflammatory drugs on the gastrointestinal system. Ann. Clin. Lab. Sci. 28, 67–81 (1998). (PMID: 9558445)
      Harirforoosh, S., Asghar, W. & Jamali, F. Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications. J. Pharm. Pharm. Sci. 16, 821 (2014). (PMID: 10.18433/J3VW2F)
      Manju, S. L., Ethiraj, K. R. & Elias, G. Safer anti-inflammatory therapy through dual COX-2/5-LOX inhibitors: a structure-based approach. Eur. J. Pharm. Sci. 121, 356–381 (2018). (PMID: 10.1016/j.ejps.2018.06.003)
      de Gaetano, G., Donati, M. B. & Cerletti, C. Prevention of thrombosis and vascular inflammation: benefits and limitations of selective or combined COX-1, COX-2 and 5-LOX inhibitors. Trends Pharmacol. Sci. 24, 245–252 (2003). (PMID: 10.1016/S0165-6147(03)00077-4)
      Catella-Lawson, F. et al. Effects of specific inhibition of cyclooxygenase-2 on sodium balance, hemodynamics, and vasoactive eicosanoids. J. Pharmacol. Exp. Ther. 289, 735–741 (1999). (PMID: 10215647)
      McGettigan, P. & Henry, D. Cardiovascular risk and inhibition of cyclooxygenase: a systematic review of the observational studies of selective and nonselective inhibitors of cyclooxygenase 2. JAMA J. Am. Med. Assoc. 296, 1633–1644 (2006). (PMID: 10.1001/jama.296.13.jrv60011)
      Warner, T. D. & Mitchell, J. A. COX-2 selectivity alone does not define the cardiovascular risks associated with non-steroidal anti-inflammatory drugs. Lancet 371, 270–273 (2008). (PMID: 10.1016/S0140-6736(08)60137-3)
      Kaur, G. & Silakari, O. Multiple target-centric strategy to tame inflammation. Future Med. Chem. 9, 1361–1376 (2017). (PMID: 10.4155/fmc-2017-0050)
      Dwyer, J. H. et al. Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N. Engl. J. Med. 350, 29–37 (2004). (PMID: 10.1056/NEJMoa025079)
      Hyde, C. A. C. & Missailidis, S. Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis. Int. Immunopharmacol. 9, 701–715 (2009). (PMID: 10.1016/j.intimp.2009.02.003)
      Koukoulitsa, C., Hadjipavlou-Litina, D., Geromichalos, G. & Skaltsa, H. Inhibitory effect on soybean lipoxygenase and docking studies of some secondary metabolites, isolated from Origanum vulgare L. ssp. hirtum. J. Enzyme Inhib. Med. Chem. 22, 99–104 (2007). (PMID: 10.1080/14756360600991017)
      Martel-Pelletier, J., Lajeunesse, D., Reboul, P. & Pelletier, J. P. Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal anti-inflammatory drugs. Ann. Rheum. Dis. 62, 501–509 (2003). (PMID: 10.1136/ard.62.6.501)
      Huang, Y. et al. Design, synthesis, biological evaluation and docking study of novel indole-2-amide as anti-inflammatory agents with dual inhibition of COX and 5-LOX. Eur. J. Med. Chem. 180, 41–50 (2019). (PMID: 10.1016/j.ejmech.2019.07.004)
      Tries, S., Neupert, W. & Laufer, S. The mechanism of action of the new anti-inflammatory compound ML3000: inhibition of 5-LOX and COX-1/2. Inflamm. Res. 51, 135–143 (2002). (PMID: 10.1007/PL00000285)
      Awaad, A. S., El-Meligy, R. M. & Soliman, G. A. Natural products in treatment of ulcerative colitis and peptic ulcer. J. Saudi Chem. Soc. 17, 101–124 (2013). (PMID: 10.1016/j.jscs.2012.03.002)
      Rates, S. M. K. Plants as source of drugs. Toxicon 39, 603–613 (2001). (PMID: 10.1016/S0041-0101(00)00154-9)
      Sharma, R. K., Mandal, S., Rajani, G. P., Gupta, N. & Srivastava, D. P. Antiulcer and anti-inflammatory activity of fresh leave extracts of Polyalthia longifolia in rats. Int. J. Drug Dev. Res. 3, 351–359 (2011).
      Tanna, A., Nair, R. & Chanda, S. Assessment of anti-inflammatory and hepatoprotective potency of Polyalthia longifolia var. pendula leaf in Wistar albino rats. J. Nat. Med. 63, 80 (2009). (PMID: 10.1007/s11418-008-0288-2)
      Phadnis, A. P., Patwardhan, S. A., Dhaneshwar, N. N., Tavale, S. S. & Guru Row, T. N. Clerodane diterpenoids from Polyalthia longifolia. Phytochemistry 27, 2899–2901 (1988). (PMID: 10.1016/0031-9422(88)80684-8)
      Chen, C.-Y. et al. Cytotoxic constituents of Polyalthia longifolia var. pendula. J. Nat. Prod. 63, 1475–1478 (2000). (PMID: 10.1021/np000176e)
      Hara, N. et al. Clerodane and ent-halimane diterpenes from Polyalthia longifolia. Phytochemistry 38, 189–194 (1995). (PMID: 10.1016/0031-9422(94)00583-F)
      Sashidhara, K. V., Singh, S. P., Sarkar, J. & Sinha, S. Cytotoxic clerodane diterpenoids from the leaves of Polyalthia longifolia. Nat. Prod. Res. 24, 1687–1694 (2010). (PMID: 10.1080/10236240902765301)
      Greig, G. M. et al. The interaction of arginine 106 of human prostaglandin G/H synthase-2 with inhibitors is not a universal component of inhibition mediated by nonsteroidal anti-inflammatory drugs. Mol. Pharmacol. 52, 829–838 (1997). (PMID: 10.1124/mol.52.5.829)
      Rieke, C. J., Mulichak, A. M., Garavito, R. M. & Smith, W. L. The role of arginine 120 of human prostaglandin endoperoxide H synthase-2 in the interaction with fatty acid substrates and inhibitors. J. Biol. Chem. 274, 17109–17114. https://doi.org/10.1074/jbc.274.24.17109 (1999). (PMID: 10.1074/jbc.274.24.1710910358065)
      Malmsten, C. L. Prostaglandins, thromboxanes, and leukotrienes in inflammation. Semin. Arthr. Rheum. 15, 29–35 (1985). (PMID: 10.1016/S0049-0172(85)80007-X)
      Talluri, M. R., Ketha, A., Battu, G. R., Tadi, R. S. & Tatipamula, V. B. Protective effect of Aurelia aurita against free radicals and streptozotocin-induced diabetes. Bangladesh J. Pharmacol. 13, 287 (2018). (PMID: 10.3329/bjp.v13i3.36907)
      Abdel-Aziz, A.A.-M. et al. Synthesis, anti-inflammatory, analgesic and COX-1/2 inhibition activities of anilides based on 5,5-diphenylimidazolidine-2,4-dione scaffold: molecular docking studies. Eur. J. Med. Chem. 115, 121–131 (2016). (PMID: 10.1016/j.ejmech.2016.03.011)
      Friesner, R. A. et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 49, 6177–6196 (2006). (PMID: 10.1021/jm051256o)
      Greenidge, P. A., Kramer, C., Mozziconacci, J. C. & Wolf, R. M. MM/GBSA binding energy prediction on the PDBbind data set: successes, failures, and directions for further improvement. J. Chem. Inf. Model. 53, 201–209 (2013). (PMID: 10.1021/ci300425v)
      Zhang, X., Perez-Sanchez, H. & Lightstone, F. C. A comprehensive docking and MM/GBSA rescoring study of ligand recognition upon binding antithrombin. Curr. Top. Med. Chem. 17, 1631–1639 (2017). (PMID: 10.2174/1568026616666161117112604)
      Lyne, P. D., Lamb, M. L. & Saeh, J. C. Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J. Med. Chem. 49, 4805–4808 (2006). (PMID: 10.1021/jm060522a)
    • الرقم المعرف:
      0 (Cyclooxygenase Inhibitors)
      0 (Diterpenes, Clerodane)
      0 (Lipoxygenase Inhibitors)
      0 (Plant Extracts)
      EC 1.13.11.34 (Arachidonate 5-Lipoxygenase)
      EC 1.14.99.1 (Cyclooxygenase 1)
      EC 1.14.99.1 (Cyclooxygenase 2)
      EC 1.14.99.1 (PTGS1 protein, human)
      EC 1.14.99.1 (PTGS2 protein, human)
      EC 1.3.11.34 (ALOX5 protein, human)
    • الموضوع:
      Date Created: 20200930 Date Completed: 20210112 Latest Revision: 20210929
    • الموضوع:
      20240628
    • الرقم المعرف:
      PMC7524750
    • الرقم المعرف:
      10.1038/s41598-020-72840-8
    • الرقم المعرف:
      32994508