Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

NAUTICA: classifying transcription factor interactions by positional and protein-protein interaction information.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Perna S;Perna S; Pinoli P; Pinoli P; Ceri S; Ceri S; Wong L; Wong L
  • المصدر:
    Biology direct [Biol Direct] 2020 Sep 16; Vol. 15 (1), pp. 13. Date of Electronic Publication: 2020 Sep 16.
  • نوع النشر :
    Journal Article; Research Support, Non-U.S. Gov't
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: BioMed Central Country of Publication: England NLM ID: 101258412 Publication Model: Electronic Cited Medium: Internet ISSN: 1745-6150 (Electronic) Linking ISSN: 17456150 NLM ISO Abbreviation: Biol Direct Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: [London] : BioMed Central, 2006-
    • الموضوع:
    • نبذة مختصرة :
      Background: Inferring the mechanisms that drive transcriptional regulation is of great interest to biologists. Generally, methods that predict physical interactions between transcription factors (TFs) based on positional information of their binding sites (e.g. chromatin immunoprecipitation followed by sequencing (ChIP-Seq) experiments) cannot distinguish between different kinds of interaction at the same binding spots, such as co-operation and competition.
      Results: In this work, we present the Network-Augmented Transcriptional Interaction and Coregulation Analyser (NAUTICA), which employs information from protein-protein interaction (PPI) networks to assign TF-TF interaction candidates to one of three classes: competition, co-operation and non-interactions. NAUTICA filters available PPI network edges and fits a prediction model based on the number of shared partners in the PPI network between two candidate interactors.
      Conclusions: NAUTICA improves on existing positional information-based TF-TF interaction prediction results, demonstrating how PPI information can improve the quality of TF interaction prediction. NAUTICA predictions - both co-operations and competitions - are supported by literature investigation, providing evidence on its capability of providing novel interactions of both kinds.
      Reviewers: This article was reviewed by Zoltán Hegedüs and Endre Barta.
    • References:
      Nucleic Acids Res. 2010 Jan;38(Database issue):D497-501. (PMID: 19884131)
      Nat Struct Mol Biol. 2013 Aug;20(8):1008-14. (PMID: 23851461)
      Bioinformatics. 2019 Feb 15;35(4):711-719. (PMID: 30084962)
      J Biol Chem. 1998 Aug 7;273(32):20175-9. (PMID: 9685363)
      Mol Cell Biol. 1999 Aug;19(8):5504-11. (PMID: 10409740)
      Nucleic Acids Res. 2017 Jan 4;45(D1):D369-D379. (PMID: 27980099)
      Mol Cancer Res. 2011 Dec;9(12):1587-607. (PMID: 21940756)
      BMC Genomics. 2014 Mar 19;15:208. (PMID: 24640962)
      Mol Cell Biol. 2001 Feb;21(3):691-702. (PMID: 11154257)
      Nat Cell Biol. 2011 Nov 20;13(12):1395-405. (PMID: 22101514)
      Bioinformatics. 2014 Sep 1;30(17):i415-21. (PMID: 25161228)
      Nucleic Acids Res. 2011 Jul;39(Web Server issue):W391-9. (PMID: 21602269)
      Nucleic Acids Res. 2011 Jul;39(12):e78. (PMID: 21470963)
      J Biol Chem. 2006 May 5;281(18):12495-505. (PMID: 16540471)
      Comput Struct Biotechnol J. 2014 Sep 03;11(18):22-7. (PMID: 25379140)
      Bioinformatics. 2009 Aug 1;25(15):1891-7. (PMID: 19435747)
      Genomics Proteomics Bioinformatics. 2018 Oct;16(5):342-353. (PMID: 30578913)
      PLoS One. 2018 Jul 17;13(7):e0199771. (PMID: 30016330)
      Science. 1999 Oct 15;286(5439):509-12. (PMID: 10521342)
      J Biol Chem. 1996 Sep 27;271(39):23999-4004. (PMID: 8798634)
      Genes Dev. 2010 Dec 15;24(24):2812-22. (PMID: 21159821)
    • Grant Information:
      693174 International ERC_ European Research Council; T1 251RES1725 International Ministry of Education - Singapore
    • Contributed Indexing:
      Keywords: Data-driven analysis; Interaction classification; Protein−protein interactions; TF-TF competition; Transcription factors
    • الرقم المعرف:
      0 (Transcription Factors)
    • الموضوع:
      Date Created: 20200917 Date Completed: 20210811 Latest Revision: 20210811
    • الموضوع:
      20221213
    • الرقم المعرف:
      PMC7493360
    • الرقم المعرف:
      10.1186/s13062-020-00268-1
    • الرقم المعرف:
      32938476