Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Autophagy protein ATG7 is a critical regulator of endothelial cell inflammation and permeability.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Endothelial cell (EC) inflammation and permeability are critical pathogenic mechanisms in many inflammatory conditions including acute lung injury. In this study, we investigated the role of ATG7, an essential autophagy regulator with no autophagy-unrelated functions, in the mechanism of EC inflammation and permeability. Knockdown of ATG7 using si-RNA significantly attenuated thrombin-induced expression of proinflammatory molecules such as IL-6, MCP-1, ICAM-1 and VCAM-1. Mechanistic study implicated reduced NF-κB activity in the inhibition of EC inflammation in ATG7-silenced cells. Moreover, depletion of ATG7 markedly reduced the binding of RelA/p65 to DNA in the nucleus. Surprisingly, the thrombin-induced degradation of IκBα in the cytosol was not affected in ATG7-depleted cells, suggesting a defect in the translocation of released RelA/p65 to the nucleus in these cells. This is likely due to suppression of thrombin-induced phosphorylation and thereby inactivation of Cofilin1, an actin-depolymerizing protein, in ATG7-depleted cells. Actin stress fiber dynamics are required for thrombin-induced translocation of RelA/p65 to the nucleus, and indeed our results showed that ATG7 silencing inhibited this response via inactivation of Cofilin1. ATG7 silencing also reduced thrombin-mediated EC permeability by inhibiting the disassembly of VE-cadherin at adherens junctions. Together, these data uncover a novel function of ATG7 in mediating EC inflammation and permeability, and provide a mechanistic basis for the linkage between autophagy and EC dysfunction.
    • References:
      Maniatis, N. A., Kotanidou, A., Catravas, J. D. & Orfanos, S. E. Endothelial pathomechanisms in acute lung injury. Vascul. Pharmacol.49, 119–133. https://doi.org/10.1016/j.vph.2008.06.009 (2008). (PMID: 10.1016/j.vph.2008.06.009187225537110599)
      Mehta, D. & Malik, A. B. Signaling mechanisms regulating endothelial permeability. Physiol. Rev.86, 279–367. https://doi.org/10.1152/physrev.00012.2005 (2006). (PMID: 10.1152/physrev.00012.200516371600)
      Liu, S. F. & Malik, A. B. NF-kappa B activation as a pathological mechanism of septic shock and inflammation. Am. J. Physiol. Lung Cell Mol. Physiol.290, L622–L645. https://doi.org/10.1152/ajplung.00477.2005 (2006). (PMID: 10.1152/ajplung.00477.200516531564)
      Cahill, P. A. & Redmond, E. M. Vascular endothelium—gatekeeper of vessel health. Atherosclerosis248, 97–109. https://doi.org/10.1016/j.atherosclerosis.2016.03.007 (2016). (PMID: 10.1016/j.atherosclerosis.2016.03.007269944276478391)
      Dejana, E., Tournier-Lasserve, E. & Weinstein, B. M. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev. Cell16, 209–221. https://doi.org/10.1016/j.devcel.2009.01.004 (2009). (PMID: 10.1016/j.devcel.2009.01.00419217423)
      Perl, M., Lomas-Neira, J., Venet, F., Chung, C. S. & Ayala, A. Pathogenesis of indirect (secondary) acute lung injury. Expert Rev. Respir. Med.5, 115–126. https://doi.org/10.1586/ers.10.92 (2011). (PMID: 10.1586/ers.10.92213485923108849)
      Rahman, A. & Fazal, F. Blocking NF-kappaB: an inflammatory issue. Proc. Am. Thorac. Soc.8, 497–503. https://doi.org/10.1513/pats.201101-009MW (2011). (PMID: 10.1513/pats.201101-009MW220529263359076)
      Komarova, Y. A., Kruse, K., Mehta, D. & Malik, A. B. Protein interactions at endothelial junctions and signaling mechanisms regulating endothelial permeability. Circ. Res.120, 179–206. https://doi.org/10.1161/CIRCRESAHA.116.306534 (2017). (PMID: 10.1161/CIRCRESAHA.116.306534280577935225667)
      Oeckinghaus, A. & Ghosh, S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol.1, a000034. https://doi.org/10.1101/cshperspect.a000034 (2009). (PMID: 10.1101/cshperspect.a000034200660922773619)
      Trocoli, A. & Djavaheri-Mergny, M. The complex interplay between autophagy and NF-kappaB signaling pathways in cancer cells. Am. J. Cancer Res.1, 629–649 (2011). (PMID: 219949033189824)
      Liou, H. C. & Baltimore, D. Regulation of the NF-kappa B/rel transcription factor and I kappa B inhibitor system. Curr. Opin. Cell Biol.5, 477–487. https://doi.org/10.1016/0955-0674(93)90014-h (1993). (PMID: 10.1016/0955-0674(93)90014-h8352966)
      Liu, T., Zhang, L., Joo, D. & Sun, S. C. NF-kappaB signaling in inflammation. Signal Transduct. Target Ther. https://doi.org/10.1038/sigtrans.2017.23 (2017). (PMID: 10.1038/sigtrans.2017.23292661315701083)
      Bijli, K. M., Fazal, F. & Rahman, A. Regulation of Rela/p65 and endothelial cell inflammation by proline-rich tyrosine kinase 2. Am. J. Respir. Cell Mol. Biol.47, 660–668. https://doi.org/10.1165/rcmb.2012-0047OC (2012). (PMID: 10.1165/rcmb.2012-0047OC228424933547104)
      DiDonato, J. A., Hayakawa, M., Rothwarf, D. M., Zandi, E. & Karin, M. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature388, 548–554. https://doi.org/10.1038/41493 (1997). (PMID: 10.1038/414939252186)
      Rahman, A., Anwar, K. N., True, A. L. & Malik, A. B. Thrombin-induced p65 homodimer binding to downstream NF-kappa B site of the promoter mediates endothelial ICAM-1 expression and neutrophil adhesion. J. Immunol.162, 5466–5476 (1999). (PMID: 10228026)
      Ledebur, H. C. & Parks, T. P. Transcriptional regulation of the intercellular adhesion molecule-1 gene by inflammatory cytokines in human endothelial cells. Essential roles of a variant NF-kappa B site and p65 homodimers. J. Biol. Chem.270, 933–943. https://doi.org/10.1074/jbc.270.2.933 (1995). (PMID: 10.1074/jbc.270.2.9337822333)
      Yang, H. et al. Inhibition of nuclear factor-kappaB signal by pyrrolidine dithiocarbamate alleviates lipopolysaccharide-induced acute lung injury. Oncotarget8, 47296–47304. https://doi.org/10.18632/oncotarget.17624 (2017). (PMID: 10.18632/oncotarget.17624285213005564565)
      Li, N. et al. Small interfering RNA targeting NF-kappaB attenuates lipopolysaccharide-induced acute lung injury in rats. BMC Physiol.16, 7. https://doi.org/10.1186/s12899-016-0027-y (2016). (PMID: 10.1186/s12899-016-0027-y280310435192588)
      Mehta, D., Ravindran, K. & Kuebler, W. M. Novel regulators of endothelial barrier function. Am. J. Physiol. Lung Cell Mol. Physiol.307, L924-935. https://doi.org/10.1152/ajplung.00318.2014 (2014). (PMID: 10.1152/ajplung.00318.2014253810264269690)
      Sukriti, S., Tauseef, M., Yazbeck, P. & Mehta, D. Mechanisms regulating endothelial permeability. Pulm Circ.4, 535–551. https://doi.org/10.1086/677356PC2013067[pii] (2014). (PMID: 10.1086/677356PC2013067[pii]256105924278616)
      Giannotta, M., Trani, M. & Dejana, E. VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity. Dev. Cell26, 441–454. https://doi.org/10.1016/j.devcel.2013.08.020 (2013). (PMID: 10.1016/j.devcel.2013.08.02024044891)
      Gavard, J. Endothelial permeability and VE-cadherin: a wacky comradeship. Cell Adh. Migr.7, 455–461. https://doi.org/10.4161/cam.27330 (2013). (PMID: 10.4161/cam.27330244302143916348)
      Dudek, S. M. & Garcia, J. G. Cytoskeletal regulation of pulmonary vascular permeability. J. Appl. Physiol.1985(91), 1487–1500. https://doi.org/10.1152/jappl.2001.91.4.1487 (2001). (PMID: 10.1152/jappl.2001.91.4.1487)
      Tian, Y., Gawlak, G., O’Donnell, J. J. 3rd., Birukova, A. A. & Birukov, K. G. Activation of vascular endothelial growth factor (VEGF) receptor 2 mediates endothelial permeability caused by cyclic stretch. J. Biol. Chem.291, 10032–10045. https://doi.org/10.1074/jbc.M115.690487 (2016). (PMID: 10.1074/jbc.M115.690487268843404858957)
      Tiruppathi, C., Ahmmed, G. U., Vogel, S. M. & Malik, A. B. Ca2+ signaling, TRP channels, and endothelial permeability. Microcirculation13, 693–708. https://doi.org/10.1080/10739680600930347 (2006). (PMID: 10.1080/1073968060093034717085428)
      Brest, P. et al. Autophagy and Crohn’s disease: at the crossroads of infection, inflammation, immunity, and cancer. Curr. Mol. Med.10, 486–502 (2010). (PMID: 10.2174/156652410791608252)
      Deretic, V. & Levine, B. Autophagy balances inflammation in innate immunity. Autophagy14, 243–251. https://doi.org/10.1080/15548627.2017.1402992 (2018). (PMID: 10.1080/15548627.2017.1402992291650435902214)
      Mizushima, N. Autophagy: process and function. Genes Dev.21, 2861–2873. https://doi.org/10.1101/gad.1599207 (2007). (PMID: 10.1101/gad.159920718006683)
      Klionsky, D. J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol.8, 931–937. https://doi.org/10.1038/nrm2245 (2007). (PMID: 10.1038/nrm224517712358)
      Glick, D., Barth, S. & Macleod, K. F. Autophagy: cellular and molecular mechanisms. J. Pathol.221, 3–12. https://doi.org/10.1002/path.2697 (2010). (PMID: 10.1002/path.2697202253362990190)
      Xie, Z. & Klionsky, D. J. Autophagosome formation: core machinery and adaptations. Nat. Cell Biol.9, 1102–1109. https://doi.org/10.1038/ncb1007-1102 (2007). (PMID: 10.1038/ncb1007-110217909521)
      Russell, R. C. et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol.15, 741–750. https://doi.org/10.1038/ncb2757 (2013). (PMID: 10.1038/ncb2757236856273885611)
      Tanida, I. et al. Apg7p/Cvt2p: a novel protein-activating enzyme essential for autophagy. Mol. Biol. Cell10, 1367–1379. https://doi.org/10.1091/mbc.10.5.1367 (1999). (PMID: 10.1091/mbc.10.5.13671023315025280)
      Salio, M. et al. Essential role for autophagy during invariant NKT cell development. Proc. Natl. Acad. Sci. USA111, E5678-5687. https://doi.org/10.1073/pnas.1413935112 (2014). (PMID: 10.1073/pnas.141393511225512546)
      Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature408, 488–492. https://doi.org/10.1038/35044114 (2000). (PMID: 10.1038/3504411411100732)
      Bates, D. O. Vascular endothelial growth factors and vascular permeability. Cardiovasc. Res.87, 262–271. https://doi.org/10.1093/cvr/cvq105 (2010). (PMID: 10.1093/cvr/cvq105204006202895541)
      Leonard, A., Marando, C., Rahman, A. & Fazal, F. Thrombin selectively engages LIM kinase 1 and slingshot-1L phosphatase to regulate NF-kappaB activation and endothelial cell inflammation. Am. J. Physiol. Lung Cell Mol. Physiol.305, L651-664. https://doi.org/10.1152/ajplung.00071.2013 (2013). (PMID: 10.1152/ajplung.00071.2013240392533840277)
      Ke, Y. et al. Effects of prostaglandin lipid mediators on agonist-induced lung endothelial permeability and inflammation. Am. J. Physiol. Lung Cell Mol. Physiol.313, L710–L721. https://doi.org/10.1152/ajplung.00519.2016 (2017). (PMID: 10.1152/ajplung.00519.2016286633365668565)
      Leonard, A. et al. Critical role of autophagy regulator Beclin1 in endothelial cell inflammation and barrier disruption. Cell Signal61, 120–129. https://doi.org/10.1016/j.cellsig.2019.04.013 (2019). (PMID: 10.1016/j.cellsig.2019.04.01331054328)
      Kang, R., Zeh, H. J., Lotze, M. T. & Tang, D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ.18, 571–580. https://doi.org/10.1038/cdd.2010.191 (2011). (PMID: 10.1038/cdd.2010.191213115633131912)
      Yoshii, S. R. & Mizushima, N. Monitoring and measuring autophagy. Int. J. Mol. Sci. https://doi.org/10.3390/ijms18091865 (2017). (PMID: 10.3390/ijms18091865288466325618514)
      Leonard, A., Rahman, A. & Fazal, F. Importins alpha and beta signaling mediates endothelial cell inflammation and barrier disruption. Cell Signal44, 103–117. https://doi.org/10.1016/j.cellsig.2018.01.011 (2018). (PMID: 10.1016/j.cellsig.2018.01.011293315835851016)
      Fazal, F., Minhajuddin, M., Bijli, K. M., McGrath, J. L. & Rahman, A. Evidence for actin cytoskeleton-dependent and -independent pathways for RelA/p65 nuclear translocation in endothelial cells. J. Biol. Chem.282, 3940–3950. https://doi.org/10.1074/jbc.M608074200 (2007). (PMID: 10.1074/jbc.M60807420017158457)
      Bijli, K. M. et al. c-Src interacts with and phosphorylates RelA/p65 to promote thrombin-induced ICAM-1 expression in endothelial cells. Am. J. Physiol. Lung Cell Mol. Physiol.292, L396-404. https://doi.org/10.1152/ajplung.00163.2006 (2007). (PMID: 10.1152/ajplung.00163.200617012367)
      Li, Q. & Verma, I. M. NF-kappaB regulation in the immune system. Nat. Rev. Immunol.2, 725–734. https://doi.org/10.1038/nri910nri910[pii] (2002). (PMID: 10.1038/nri910nri910[pii]12360211)
      Fazal, F. et al. Essential role of cofilin-1 in regulating thrombin-induced RelA/p65 nuclear translocation and intercellular adhesion molecule 1 (ICAM-1) expression in endothelial cells. J. Biol. Chem.284, 21047–21056. https://doi.org/10.1074/jbc.M109.016444 (2009). (PMID: 10.1074/jbc.M109.016444194830842742869)
      Monaghan-Benson, E. & Burridge, K. The regulation of vascular endothelial growth factor-induced microvascular permeability requires Rac and reactive oxygen species. J. Biol. Chem.284, 25602–25611. https://doi.org/10.1074/jbc.M109.009894 (2009). (PMID: 10.1074/jbc.M109.009894196333582757962)
      Cerutti, C. & Ridley, A. J. Endothelial cell-cell adhesion and signaling. Exp. Cell Res.358, 31–38. https://doi.org/10.1016/j.yexcr.2017.06.003 (2017). (PMID: 10.1016/j.yexcr.2017.06.003286026265700119)
      Swart, C., Du Toit, A. & Loos, B. Autophagy and the invisible line between life and death. Eur. J. Cell Biol.95, 598–610. https://doi.org/10.1016/j.ejcb.2016.10.005 (2016). (PMID: 10.1016/j.ejcb.2016.10.00528340912)
      Boteon, Y. L. et al. Mechanisms of autophagy activation in endothelial cell and their targeting during normothermic machine liver perfusion. World J. Gastroenterol.23, 8443–8451. https://doi.org/10.3748/wjg.v23.i48.8443 (2017). (PMID: 10.3748/wjg.v23.i48.8443293588545752706)
      Takeshige, K., Baba, M., Tsuboi, S., Noda, T. & Ohsumi, Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol.119, 301–311. https://doi.org/10.1083/jcb.119.2.301 (1992). (PMID: 10.1083/jcb.119.2.3011400575)
      Shintani, T. & Klionsky, D. J. Autophagy in health and disease: a double-edged sword. Science306, 990–995. https://doi.org/10.1126/science.1099993 (2004). (PMID: 10.1126/science.1099993155284351705980)
      Jin, L., Batra, S. & Jeyaseelan, S. Deletion of Nlrp3 augments survival during polymicrobial sepsis by decreasing autophagy and enhancing phagocytosis. J. Immunol.198, 1253–1262 (2017). (PMID: 10.4049/jimmunol.1601745)
      Sun, Y. et al. Beclin-1-dependent autophagy protects the heart during sepsis. Circulation138, 2247–2262 (2018). (PMID: 10.1161/CIRCULATIONAHA.117.032821)
      Slavin, S. A., Leonard, A., Grose, V., Fazal, F. & Rahman, A. Autophagy inhibitor 3-methyladenine protects against endothelial cell barrier dysfunction in acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol.314, L388–L396. https://doi.org/10.1152/ajplung.00555.2016 (2018). (PMID: 10.1152/ajplung.00555.201629074492)
      Tanida, I., Ueno, T. & Kominami, E. LC3 and autophagy. Methods Mol. Biol.445, 77–88. https://doi.org/10.1007/978-1-59745-157-4_4 (2008). (PMID: 10.1007/978-1-59745-157-4_418425443)
      Levine, B., Mizushima, N. & Virgin, H. W. Autophagy in immunity and inflammation. Nature469, 323–335. https://doi.org/10.1038/nature09782 (2011). (PMID: 10.1038/nature09782212488393131688)
      Bijli, K. M., Fazal, F., Minhajuddin, M. & Rahman, A. Activation of Syk by protein kinase C-delta regulates thrombin-induced intercellular adhesion molecule-1 expression in endothelial cells via tyrosine phosphorylation of RelA/p65. J. Biol. Chem.283, 14674–14684. https://doi.org/10.1074/jbc.M802094200 (2008). (PMID: 10.1074/jbc.M802094200183621472386948)
      Neal, M. D. et al. A critical role for TLR4 induction of autophagy in the regulation of enterocyte migration and the pathogenesis of necrotizing enterocolitis. J. Immunol.190, 3541–3551. https://doi.org/10.4049/jimmunol.1202264 (2013). (PMID: 10.4049/jimmunol.1202264234555033608826)
      Mondaca-Ruff, D. et al. Angiotensin II-regulated autophagy is required for vascular smooth muscle cell hypertrophy. Front Pharmacol.9, 1553. https://doi.org/10.3389/fphar.2018.01553 (2018). (PMID: 10.3389/fphar.2018.0155330804791)
    • Grant Information:
      R01 HL130870 United States HL NHLBI NIH HHS; P30 ES001247 United States ES NIEHS NIH HHS; R01 HL138538 United States HL NHLBI NIH HHS; R01 GM130463 United States GM NIGMS NIH HHS; T32 ES007026 United States ES NIEHS NIH HHS
    • الرقم المعرف:
      0 (NF-kappa B)
      EC 3.4.21.5 (Thrombin)
      EC 6.2.1.45 (ATG7 protein, human)
      EC 6.2.1.45 (Autophagy-Related Protein 7)
    • الموضوع:
      Date Created: 20200815 Date Completed: 20210111 Latest Revision: 20240428
    • الموضوع:
      20240428
    • الرقم المعرف:
      PMC7426828
    • الرقم المعرف:
      10.1038/s41598-020-70126-7
    • الرقم المعرف:
      32792588