Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Neurotrophic factors and target-specific retrograde signaling interactions define the specificity of classical and neuropeptide cotransmitter release at identified Lymnaea synapses.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Many neurons concurrently and/or differentially release multiple neurotransmitter substances to selectively modulate the activity of distinct postsynaptic targets within a network. However, the molecular mechanisms that produce synaptic heterogeneity by regulating the cotransmitter release characteristics of individual presynaptic terminals remain poorly defined. In particular, we know little about the regulation of neuropeptide corelease, despite the fact that they mediate synaptic transmission, plasticity and neuromodulation. Here, we report that an identified Lymnaea neuron selectively releases its classical small molecule and peptide neurotransmitters, acetylcholine and FMRFamide-derived neuropeptides, to differentially influence the activity of distinct postsynaptic targets that coordinate cardiorespiratory behaviour. Using a combination of electrophysiological, molecular, and pharmacological approaches, we found that neuropeptide cotransmitter release was regulated by cross-talk between extrinsic neurotrophic factor signaling and target-specific retrograde arachidonic acid signaling, which converged on modulation of glycogen synthase kinase 3. In this context, we identified a novel role for the Lymnaea synaptophysin homologue as a specific and synapse-delimited inhibitory regulator of peptide neurotransmitter release. This study is among the first to define the cellular and molecular mechanisms underlying the differential release of cotransmitter substances from individual presynaptic terminals, which allow for context-dependent tuning and plasticity of the synaptic networks underlying patterned motor behaviour.
    • References:
      Burnstock, G. Do some nerve cells release more than one transmitter?. Neuroscience1, 239–248 (1976). (PMID: 11370511)
      Kupfermann, I. Functional studies of cotransmission. Physiol. Rev.71, 683–732 (1991). (PMID: 1647537)
      Nusbaum, M. P., Blitz, D. M. & Marder, E. Functional consequences of neuropeptide and small-molecule co-transmission. Nat. Rev. Neurosci.18, 389–403. https://doi.org/10.1038/nrn.2017.56 (2017). (PMID: 10.1038/nrn.2017.56285929055547741)
      Sudhof, T. C. The synaptic vesicle cycle. Annu. Rev. Neurosci.27, 509–547. https://doi.org/10.1146/annurev.neuro.26.041002.131412 (2004). (PMID: 10.1146/annurev.neuro.26.041002.13141215217342)
      Sossin, W. S., Sweet-Cordero, A. & Scheller, R. H. Dale’s hypothesis revisited: different neuropeptides derived from a common prohormone are targeted to different processes. Proc. Natl. Acad. Sci. U.S.A.87, 4845–4848 (1990). (PMID: 235295254215)
      Blitz, D. M. & Nusbaum, M. P. Distinct functions for cotransmitters mediating motor pattern selection. J. Neurosci. Off. J. Soc. Neurosci.19, 6774–6783 (1999).
      Samano, C., Cifuentes, F. & Morales, M. A. Neurotransmitter segregation: functional and plastic implications. Prog. Neurobiol.97, 277–287. https://doi.org/10.1016/j.pneurobio.2012.04.004 (2012). (PMID: 10.1016/j.pneurobio.2012.04.00422531669)
      Dulcis, D., Jamshidi, P., Leutgeb, S. & Spitzer, N. C. Neurotransmitter switching in the adult brain regulates behavior. Science340, 449–453. https://doi.org/10.1126/science.1234152 (2013). (PMID: 10.1126/science.123415223620046)
      Casadio, A. et al. A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell99, 221–237 (1999). (PMID: 10535740)
      Rosenmund, C., Clements, J. D. & Westbrook, G. L. Nonuniform probability of glutamate release at a hippocampal synapse. Science262, 754–757 (1993). (PMID: 7901909)
      Maccaferri, G., Toth, K. & McBain, C. J. Target-specific expression of presynaptic mossy fiber plasticity. Science279, 1368–1370 (1998). (PMID: 9478900)
      Pelkey, K. A., Lavezzari, G., Racca, C., Roche, K. W. & McBain, C. J. mGluR7 is a metaplastic switch controlling bidirectional plasticity of feedforward inhibition. Neuron46, 89–102. https://doi.org/10.1016/j.neuron.2005.02.011 (2005). (PMID: 10.1016/j.neuron.2005.02.01115820696)
      Lee, S., Kim, K. & Zhou, Z. J. Role of ACh-GABA cotransmission in detecting image motion and motion direction. Neuron68, 1159–1172. https://doi.org/10.1016/j.neuron.2010.11.031 (2010). (PMID: 10.1016/j.neuron.2010.11.031211726163094727)
      van den Pol, A. N. Neuropeptide transmission in brain circuits. Neuron76, 98–115. https://doi.org/10.1016/j.neuron.2012.09.014 (2012). (PMID: 10.1016/j.neuron.2012.09.014230408093918222)
      Verhage, M. et al. Differential release of amino acids, neuropeptides, and catecholamines from isolated nerve terminals. Neuron6, 517–524 (1991). (PMID: 2015091)
      Whim, M. D. & Lloyd, P. E. Frequency-dependent release of peptide cotransmitters from identified cholinergic motor neurons in Aplysia. Proc. Natl. Acad. Sci. USA.86, 9034–9038 (1989). (PMID: 2554338)
      Vilim, F. S., Cropper, E. C., Price, D. A., Kupfermann, I. & Weiss, K. R. Peptide cotransmitter release from motorneuron B16 in aplysia californica: costorage, corelease, and functional implications. J. Neurosci. Off. J. Soc. Neurosci.20, 2036–2042 (2000).
      Whim, M. D. Near simultaneous release of classical and peptide cotransmitters from chromaffin cells. J. Neurosci. Off. J. Soc. Neurosci.26, 6637–6642. https://doi.org/10.1523/JNEUROSCI.5100-05.2006 (2006). (PMID: 10.1523/JNEUROSCI.5100-05.2006)
      Whim, M. D., Niemann, H. & Kaczmarek, L. K. The secretion of classical and peptide cotransmitters from a single presynaptic neuron involves a synaptobrevin-like molecule. J. Neurosci. Off. J. Soc. Neurosci.17, 2338–2347 (1997).
      Ohnuma, K., Whim, M. D., Fetter, R. D., Kaczmarek, L. K. & Zucker, R. S. Presynaptic target of Ca2+ action on neuropeptide and acetylcholine release in Aplysia californica. J. Physiol.535, 647–662 (2001). (PMID: 115597642278817)
      Schacher, S., Rayport, S. G. & Ambron, R. T. Giant Aplysia neuron R2 reliably forms strong chemical connections in vitro. J. Neurosci. Off. J. Soc. Neurosci.5, 2851–2856 (1985).
      Kueh, D. & Jellies, J. A. Targeting a neuropeptide to discrete regions of the motor arborizations of a single neuron. J. Exp. Biol.215, 2108–2116. https://doi.org/10.1242/jeb.067603 (2012). (PMID: 10.1242/jeb.06760322623199)
      Syed, N. I., Bulloch, A. G. & Lukowiak, K. In vitro reconstruction of the respiratory central pattern generator of the mollusk Lymnaea. Science250, 282–285 (1990). (PMID: 2218532)
      Marder, E., Christie, A. E. & Kilman, V. L. Functional organization of cotransmission systems: lessons from small nervous systems. Invert. Neurosci.1, 105–112 (1995). (PMID: 9372135)
      Smit, A. B. et al. A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature411, 261–268. https://doi.org/10.1038/35077000 (2001). (PMID: 10.1038/3507700011357121)
      Skingsley, D. R. et al. A molecularly defined cardiorespiratory interneuron expressing SDPFLRFamide/GDPFLRFamide in the snail Lymnaea: monosynaptic connections and pharmacology. J. Neurophysiol.69, 915–927 (1993). (PMID: 8096540)
      Woodin, M. A., Munno, D. W. & Syed, N. I. Trophic factor-induced excitatory synaptogenesis involves postsynaptic modulation of nicotinic acetylcholine receptors. J. Neurosci. Off. J. Soc. Neurosci.22, 505–514 (2002).
      Saunders, S. E., Kellett, E., Bright, K., Benjamin, P. R. & Burke, J. F. Cell-specific alternative RNA splicing of an FMRFamide gene transcript in the brain. J. Neurosci. Off. J. Soc. Neurosci.12, 1033–1039 (1992).
      Syed, N. I., Ridgway, R. L., Lukowiak, K. & Bulloch, A. G. Transplantation and functional integration of an identified respiratory interneuron in Lymnaea stagnalis. Neuron8, 767–774 (1992). (PMID: 1314624)
      Flynn, N., Getz, A., Visser, F., Janes, T. A. & Syed, N. I. Menin: a tumor suppressor that mediates postsynaptic receptor expression and synaptogenesis between central neurons of Lymnaea stagnalis. PLoS ONE9, e111103. https://doi.org/10.1371/journal.pone.0111103 (2014). (PMID: 10.1371/journal.pone.0111103253472954210270)
      Syed, N. I., Harrison, D. & Winlow, W. Respiratory behavior in the pond snail Lymnaea stagnalis. J. Comp. Physiol. A.169, 541–555. https://doi.org/10.1007/bf00193545 (1991). (PMID: 10.1007/bf00193545)
      Buckett, K. J., Peters, M., Dockray, G. J., Van Minnen, J. & Benjamin, P. R. Regulation of heartbeat in Lymnaea by motoneurons containing FMRFamide-like peptides. J. Neurophysiol.63, 1426–1435. https://doi.org/10.1152/jn.1990.63.6.1426 (1990). (PMID: 10.1152/jn.1990.63.6.14261972741)
      Buckett, K. J., Peters, M. & Benjamin, P. R. Excitation and inhibition of the heart of the snail, Lymnaea, by non-FMRFamidergic motoneurons. J. Neurophysiol.63, 1436–1447. https://doi.org/10.1152/jn.1990.63.6.1436 (1990). (PMID: 10.1152/jn.1990.63.6.14362358884)
      van Nierop, P. et al. Identification of molluscan nicotinic acetylcholine receptor (nAChR) subunits involved in formation of cation- and anion-selective nAChRs. J. Neurosci. Off. J. Soc. Neurosci.25, 10617–10626. https://doi.org/10.1523/JNEUROSCI.2015-05.2005 (2005). (PMID: 10.1523/JNEUROSCI.2015-05.2005)
      Getz, A. M. et al. Two proteolytic fragments of menin coordinate the nuclear transcription and postsynaptic clustering of neurotransmitter receptors during synaptogenesis between Lymnaea neurons. Sci. Rep.6, 31779. https://doi.org/10.1038/srep31779 (2016). (PMID: 10.1038/srep31779275387414990912)
      van Nierop, P. et al. Identification and functional expression of a family of nicotinic acetylcholine receptor subunits in the central nervous system of the mollusc Lymnaea stagnalis. J. Biol. Chem.281, 1680–1691. https://doi.org/10.1074/jbc.M508571200 (2006). (PMID: 10.1074/jbc.M50857120016286458)
      Cottrell, G. A. & Davies, N. W. Multiple receptor sites for a molluscan peptide (FMRFamide) and related peptides of Helix. J. Physiol.382, 51–68 (1987). (PMID: 30409681183012)
      Wang, Z., Lange, A. B. & Orchard, I. Coupling of a single receptor to two different G proteins in the signal transduction of FMRFamide-related peptides. Biochem. Biophys. Res. Commun.212, 531–538 (1995). (PMID: 7626067)
      Man-Son-Hing, H., Zoran, M. J., Lukowiak, K. & Haydon, P. G. A neuromodulator of synaptic transmission acts on the secretory apparatus as well as on ion channels. Nature341, 237–239. https://doi.org/10.1038/341237a0 (1989). (PMID: 10.1038/341237a02476676)
      Park, H. & Poo, M. M. Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci.14, 7–23. https://doi.org/10.1038/nrn3379 (2013). (PMID: 10.1038/nrn337923254191)
      Xu, F., Hennessy, D. A., Lee, T. K. & Syed, N. I. Trophic factor-induced intracellular calcium oscillations are required for the expression of postsynaptic acetylcholine receptors during synapse formation between Lymnaea neurons. J. Neurosci. Off. J. Soc. Neurosci.29, 2167–2176. https://doi.org/10.1523/JNEUROSCI.4682-08.2009 (2009). (PMID: 10.1523/JNEUROSCI.4682-08.2009)
      Luk, C. C. et al. Trophic factor-induced activity “signature” regulates the functional expression of postsynaptic excitatory acetylcholine receptors required for synaptogenesis. Sci. Rep.5, 9523. https://doi.org/10.1038/srep09523 (2015). (PMID: 10.1038/srep09523258276404381329)
      van Kesteren, R. E. et al. Postsynaptic expression of an epidermal growth factor receptor regulates cholinergic synapse formation between identified molluscan neurons. Eur. J. Neurosci.27, 2043–2056. https://doi.org/10.1111/j.1460-9568.2008.06189.x (2008). (PMID: 10.1111/j.1460-9568.2008.06189.x18412625)
      Fernandez-Chacon, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature410, 41–49. https://doi.org/10.1038/35065004 (2001). (PMID: 10.1038/3506500411242035)
      Zhang, Z., Bhalla, A., Dean, C., Chapman, E. R. & Jackson, M. B. Synaptotagmin IV: a multifunctional regulator of peptidergic nerve terminals. Nat. Neurosci.12, 163–171. https://doi.org/10.1038/nn.2252 (2009). (PMID: 10.1038/nn.2252191369692710815)
      Jackman, S. L., Turecek, J., Belinsky, J. E. & Regehr, W. G. The calcium sensor synaptotagmin 7 is required for synaptic facilitation. Nature529, 88–91. https://doi.org/10.1038/nature16507 (2016). (PMID: 10.1038/nature16507267385954729191)
      Martin, K. C. et al. Evidence for synaptotagmin as an inhibitory clamp on synaptic vesicle release in Aplysia neurons. Proc. Natl. Acad. Sci. U.S.A.92, 11307–11311 (1995). (PMID: 747998540621)
      Nakhost, A., Houeland, G., Castellucci, V. F. & Sossin, W. S. Differential regulation of transmitter release by alternatively spliced forms of synaptotagmin I. J. Neurosci. Off. J. Soc. Neurosci.23, 6238–6244 (2003).
      Nakhost, A., Houeland, G., Blandford, V. E., Castellucci, V. F. & Sossin, W. S. Identification and characterization of a novel C2B splice variant of synaptotagmin I. J. Neurochem.89, 354–363. https://doi.org/10.1111/j.1471-4159.2004.02325.x (2004). (PMID: 10.1111/j.1471-4159.2004.02325.x15056279)
      Sollner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H. & Rothman, J. E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell75, 409–418 (1993). (PMID: 8221884)
      Washbourne, P., Schiavo, G. & Montecucco, C. Vesicle-associated membrane protein-2 (synaptobrevin-2) forms a complex with synaptophysin. Biochem. J.305(Pt 3), 721–724 (1995). (PMID: 78482691136318)
      Edelmann, L., Hanson, P. I., Chapman, E. R. & Jahn, R. Synaptobrevin binding to synaptophysin: a potential mechanism for controlling the exocytotic fusion machine. EMBO J.14, 224–231 (1995). (PMID: 7835333398074)
      Zhu, L. Q. et al. GSK-3 beta inhibits presynaptic vesicle exocytosis by phosphorylating P/Q-type calcium channel and interrupting SNARE complex formation. J. Neurosci. Off. J. Soc. Neurosci.30, 3624–3633. https://doi.org/10.1523/JNEUROSCI.5223-09.2010 (2010). (PMID: 10.1523/JNEUROSCI.5223-09.2010)
      Hughes, K., Nikolakaki, E., Plyte, S. E., Totty, N. F. & Woodgett, J. R. Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. EMBO J.12, 803–808 (1993). (PMID: 8382613413270)
      Saito, Y., Vandenheede, J. R. & Cohen, P. The mechanism by which epidermal growth factor inhibits glycogen synthase kinase 3 in A431 cells. Biochem. J.303(Pt 1), 27–31 (1994). (PMID: 79452521137551)
      Regehr, W. G., Carey, M. R. & Best, A. R. Activity-dependent regulation of synapses by retrograde messengers. Neuron63, 154–170. https://doi.org/10.1016/j.neuron.2009.06.021 (2009). (PMID: 10.1016/j.neuron.2009.06.0211964047519640475)
      Piomelli, D. et al. Lipoxygenase metabolites of arachidonic acid as second messengers for presynaptic inhibition of Aplysia sensory cells. Nature328, 38–43. https://doi.org/10.1038/328038a0 (1987). (PMID: 10.1038/328038a02439918)
      Roszer, T. et al. A possible stimulatory effect of FMRFamide on neural nitric oxide production in the central nervous system of Helix lucorum L. Brain Behav. Evol.63, 23–33. https://doi.org/10.1159/000073757 (2004). (PMID: 10.1159/00007375714673196)
      Lovell, P., McMahon, B. & Syed, N. I. Synaptic precedence during synapse formation between reciprocally connected neurons involves transmitter-receptor interactions and AA metabolites. J. Neurophysiol.88, 1328–1338 (2002). (PMID: 12205154)
      Schaechter, J. D. & Benowitz, L. I. Activation of protein kinase C by arachidonic acid selectively enhances the phosphorylation of GAP-43 in nerve terminal membranes. J. Neurosci. Off. J. Soc. Neurosci.13, 4361–4371 (1993).
      Hur, E. M. & Zhou, F. Q. GSK3 signalling in neural development. Nat. Rev. Neurosci.11, 539–551. https://doi.org/10.1038/nrn2870 (2010). (PMID: 10.1038/nrn2870206480613533361)
      Chen, R. H., Ding, W. V. & McCormick, F. Wnt signaling to beta-catenin involves two interactive components. Glycogen synthase kinase-3beta inhibition and activation of protein kinase C. J. Biol. Chem.275, 17894–17899. https://doi.org/10.1074/jbc.M905336199 (2000). (PMID: 10.1074/jbc.M90533619910749878)
      Marder, E. Neural signalling: Does colocalization imply cotransmission?. Curr. Biol.9, R809-811 (1999). (PMID: 10556078)
      Shakiryanova, D., Tully, A. & Levitan, E. S. Activity-dependent synaptic capture of transiting peptidergic vesicles. Nat. Neurosci.9, 896–900. https://doi.org/10.1038/nn1719 (2006). (PMID: 10.1038/nn171916767091)
      Choi, C. et al. Autoreceptor control of peptide/neurotransmitter corelease from PDF neurons determines allocation of circadian activity in drosophila. Cell Rep.2, 332–344. https://doi.org/10.1016/j.celrep.2012.06.021 (2012). (PMID: 10.1016/j.celrep.2012.06.021229388673432947)
      Munno, D. W., Prince, D. J. & Syed, N. I. Synapse number and synaptic efficacy are regulated by presynaptic cAMP and protein kinase A. J. Neurosci. Off. J. Soc. Neurosci.23, 4146–4155 (2003).
      Carta, M. et al. Membrane lipids tune synaptic transmission by direct modulation of presynaptic potassium channels. Neuron81, 787–799. https://doi.org/10.1016/j.neuron.2013.12.028 (2014). (PMID: 10.1016/j.neuron.2013.12.02824486086)
      Navone, F. et al. Protein p38: an integral membrane protein specific for small vesicles of neurons and neuroendocrine cells. J. Cell Biol.103, 2511–2527 (1986). (PMID: 3097029)
      Schmidle, T. et al. Synaptin/synaptophysin, p65 and SV2: their presence in adrenal chromaffin granules and sympathetic large dense core vesicles. Biochem. Biophys. Acta.1060, 251–256 (1991). (PMID: 1751512)
      Obendorf, D., Schwarzenbrunner, U., Fischer-Colbrie, R., Laslop, A. & Winkler, H. In adrenal medulla synaptophysin (protein p38) is present in chromaffin granules and in a special vesicle population. J. Neurochem.51, 1573–1580 (1988). (PMID: 3139837)
      Mutch, S. A. et al. Protein quantification at the single vesicle level reveals that a subset of synaptic vesicle proteins are trafficked with high precision. J. Neurosci. Off. J. Soc. Neurosci.31, 1461–1470. https://doi.org/10.1523/JNEUROSCI.3805-10.2011 (2011). (PMID: 10.1523/JNEUROSCI.3805-10.2011)
      Kwon, S. E. & Chapman, E. R. Glycosylation is dispensable for sorting of synaptotagmin 1 but is critical for targeting of SV2 and synaptophysin to recycling synaptic vesicles. J. Biol. Chem.287, 35658–35668. https://doi.org/10.1074/jbc.M112.398883 (2012). (PMID: 10.1074/jbc.M112.398883229082223471705)
      Barkus, R. V., Klyachko, O., Horiuchi, D., Dickson, B. J. & Saxton, W. M. Identification of an axonal kinesin-3 motor for fast anterograde vesicle transport that facilitates retrograde transport of neuropeptides. Mol. Biol. Cell19, 274–283. https://doi.org/10.1091/mbc.E07-03-0261 (2008). (PMID: 10.1091/mbc.E07-03-0261179893652174192)
      Puthanveettil, S. V. et al. A new component in synaptic plasticity: upregulation of kinesin in the neurons of the gill-withdrawal reflex. Cell135, 960–973. https://doi.org/10.1016/j.cell.2008.11.003 (2008). (PMID: 10.1016/j.cell.2008.11.003190417562635114)
      Copping, J., Syed, N. I. & Winlow, W. Seasonal plasticity of synaptic connections between identified neurones in Lymnaea. Acta Biol. Hung.51, 205–210 (2000). (PMID: 11034145)
      Becher, A. et al. The synaptophysin-synaptobrevin complex: a hallmark of synaptic vesicle maturation. J. Neurosci. Off. J. Soc. Neurosci.19, 1922–1931 (1999).
      ter Maat, A., Geraerts, W. P., Jansen, R. F. & Bos, N. P. Chemically mediated positive feedback generates long-lasting afterdischarge in a molluscan neuroendocrine system. Brain Res.438, 77–82 (1988). (PMID: 3345451)
      McMahon, H. T. et al. Synaptophysin, a major synaptic vesicle protein, is not essential for neurotransmitter release. Proc. Natl. Acad. Sci. U.S.A.93, 4760–4764 (1996). (PMID: 864347639352)
      Schmitt, U., Tanimoto, N., Seeliger, M., Schaeffel, F. & Leube, R. E. Detection of behavioral alterations and learning deficits in mice lacking synaptophysin. Neuroscience162, 234–243. https://doi.org/10.1016/j.neuroscience.2009.04.046 (2009). (PMID: 10.1016/j.neuroscience.2009.04.04619393300)
      Janz, R. et al. Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron24, 687–700 (1999). (PMID: 10595519)
      Tarpey, P. S. et al. A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation. Nat. Genet.41, 535–543. https://doi.org/10.1038/ng.367 (2009). (PMID: 10.1038/ng.367193774762872007)
      Ridgway, R. L., Syed, N. I., Lukowiak, K. & Bulloch, A. G. Nerve growth factor (NGF) induces sprouting of specific neurons of the snail, Lymnaea stagnalis. J. Neurobiol.22, 377–390. https://doi.org/10.1002/neu.480220406 (1991). (PMID: 10.1002/neu.4802204061890421)
      Feng, Z. P. et al. Transcriptome analysis of the central nervous system of the mollusc Lymnaea stagnalis. BMC Genom.10, 451. https://doi.org/10.1186/1471-2164-10-451 (2009). (PMID: 10.1186/1471-2164-10-451)
      Spafford, J. D. et al. Calcium channel structural determinants of synaptic transmission between identified invertebrate neurons. J. Biol. Chem.278, 4258–4267. https://doi.org/10.1074/jbc.M211076200 (2003). (PMID: 10.1074/jbc.M21107620012458203)
      Schot, L. P. & Boer, H. H. Immunocytochemical demonstration of peptidergic cells in the pond snail Lymnaea stagnalis with an antiserum to the molluscan cardioactive tetrapeptide FMRF-amide. Cell Tissue Res.225, 347–354 (1982). (PMID: 7105153)
      Janes, T. A., Xu, F. & Syed, N. I. Graded hypoxia acts through a network of distributed peripheral oxygen chemoreceptors to produce changes in respiratory behaviour and plasticity. Eur. J. Neurosci.42, 1858–1871. https://doi.org/10.1111/ejn.12940 (2015). (PMID: 10.1111/ejn.1294025951609)
      Kehoe, J. Three acetylcholine receptors in Aplysia neurones. J. Physiol.225, 115–146 (1972). (PMID: 46797411331096)
    • Grant Information:
      10000255 Canada CIHR
    • الرقم المعرف:
      0 (Nerve Growth Factors)
      0 (Neuropeptides)
      0 (Neurotransmitter Agents)
      0 (Receptors, Nicotinic)
    • الموضوع:
      Date Created: 20200813 Date Completed: 20201218 Latest Revision: 20210811
    • الموضوع:
      20250114
    • الرقم المعرف:
      PMC7419297
    • الرقم المعرف:
      10.1038/s41598-020-70322-5
    • الرقم المعرف:
      32782285