Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Lactobacillus rhamnosus GG promotes M1 polarization in murine bone marrow-derived macrophages by activating TLR2/MyD88/MAPK signaling pathway.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Wiley Country of Publication: Australia NLM ID: 100956805 Publication Model: Print Cited Medium: Internet ISSN: 1740-0929 (Electronic) Linking ISSN: 13443941 NLM ISO Abbreviation: Anim Sci J Subsets: MEDLINE
    • بيانات النشر:
      Publication: Richmond, Vic. : Wiley
      Original Publication: Tokyo, Japan : Japanese Society of Zootechnical Science [1999-
    • الموضوع:
    • نبذة مختصرة :
      Lactobacillus rhamnosus GG (LGG) is increasingly applied in functional food products and acts as a probiotic model in nutritious and clinical studies. Increasing evidences have revealed the immune modulation of LGG on macrophages. The aim of this study is to investigate the effect of LGG on macrophage polarization of murine bone marrow-derived macrophages (BMDMs). BMDMs were treated with 10 8 colony-forming units (CFU)/ml LGG for 1.5, 3, and 6 hr. Results showed that LGG obviously upregulated the mRNA expression of M1-associated cytokines (p < .05), including interleukin-1 beta (IL-1β), IL-6, tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide synthase (iNOS), whereas had no effect on the expression of M2-associated markers (p > .05), including arginase 1 (Arg1), mannose receptor, and chitinase-like protein 3 (YM1). Furthermore, LGG markedly increased the expression of pro-inflammatory cytokines (IL-12p40, cyclooxygenase-2 [COX-2], and interferon-γ [IFN-γ]) (p < .05) and anti-inflammatory cytokines (IL-10, IL-4, and transforming growth factor-β [TGF-β]) (p < .05). In addition, we also found that TLR2/MyD88/MAPK signaling pathway was required for LGG-induced M1 macrophage polarization and M1-related cytokines expression. Together, these findings demonstrate that probiotic LGG facilitates M1 polarization of BMDMs, suggesting that LGG may have an immunotherapeutic potential in regulating the host defense against pathogen invasion.
      (© 2020 Japanese Society of Animal Science.)
    • References:
      Blümer, N., Sel, S., Virna, S., Patrascan, C., Zimmermann, S., Herz, U., … Garn, H. (2007). Perinatal maternal application of Lactobacillus rhamnosus GG suppresses allergic airway inflammation in mouse offspring. Clinical & Experimental Allergy, 37, 348-357.
      Borchers, A. T., Selmi, C., Meyers, F. J., Keen, C. L., & Gershwin, M. E. (2009). Probiotics and immunity. Journal of Gastroenterology, 44, 26-46.
      Christoffersen, T. E., Hult, L. T. O., Kuczkowska, K., Moe, K. M., Skeie, S., Lea, T., & Kleiveland, C. R. (2014). In vitro comparison of the effects of probiotic, commensal and pathogenic strains on macrophage polarization. Probiotics and Antimicrobial Proteins, 6, 1-10.
      Deng, H., Li, Z., Tan, Y., Guo, Z., Liu, Y., Wang, Y., … Bai, Y. (2016). A novel strain of Bacteroides fragilis enhances phagocytosis and polarises M1 macrophages. Scientific Reports, 6, 29401.
      Dogi, C. A., Galdeano, C. M., & Perdigón, G. (2008). Gut immune stimulation by non pathogenic Gram (+) and Gram (−) bacteria. Comparison with a probiotic strain. Cytokine, 41, 223-231.
      Erickson, K. L., & Hubbard, N. E. (2000). Probiotic immunomodulation in health and disease. The Journal of Nutrition, 130, 403S-409S. https://doi.org/10.1093/jn/130.2.403S.
      Fu, A., Mo, Q., Wu, Y., Wang, B., Liu, R., Tang, L., … Li, W. (2019). Protective effect of Bacillus amyloliquefaciens against Salmonella via polarizing macrophages to M1 phenotype directly and to M2 depended on microbiota. Food & Function, 10, 7653-7666.
      Fu, A., Wang, Y., Wu, Y., Chen, H., Zheng, S., Li, Y., … Li, W. (2017). Echinacea purpurea extract polarizes M1 macrophages in murine bone marrow-derived macrophages through the activation of JNK. Journal of Cellular Biochemistry, 118, 2664-2671.
      Gao, K., Wang, C., Liu, L., Dou, X., Liu, J., Yuan, L., … Wang, H. (2017). Immunomodulation and signaling mechanism of Lactobacillus rhamnosus GG and its components on porcine intestinal epithelial cells stimulated by lipopolysaccharide. Journal of Microbiology, Immunology and Infection, 50, 700-713.
      Gao, S., Zhou, J., Liu, N., Wang, L., Gao, Q., Wu, Y., … Liu, Y. (2015). Curcumin induces M2 macrophage polarization by secretion IL-4 and/or IL-13. Journal of Molecular and Cellular Cardiology, 85, 131-139.
      Gareau, M. G., Sherman, P. M., & Walker, W. A. (2010). Probiotics and the gut microbiota in intestinal health and disease. Nature Reviews Gastroenterology & Hepatology, 7, 503.
      Goldin, B. R., Gorbach, S. L., Saxelin, M., Barakat, S., Gualtieri, L., & Salminen, S. (1992). Survival of Lactobacillus species (strain GG) in human gastrointestinal tract. Digestive Diseases and Sciences, 37, 121-128.
      Gordon, S., & Martinez, F. O. (2010). Alternative activation of macrophages: Mechanism and functions. Immunity, 32, 593-604.
      Gordon, S., & Taylor, P. R. (2005). Monocyte and macrophage heterogeneity. Nature Reviews Immunology, 5, 953.
      Grüber, C., Wendt, M., Sulser, C., Lau, S., Kulig, M., Wahn, U., … Niggemann, B. (2007). Randomized, placebo-controlled trial of Lactobacillus rhamnosus GG as treatment of atopic dermatitis in infancy. Allergy, 62, 1270-1276.
      Guo, Y., Song, Z., Zhou, M., Yang, Y., Zhao, Y., Liu, B., & Zhang, X. (2017). Infiltrating macrophages in diabetic nephropathy promote podocytes apoptosis via TNF-α-ROS-p38MAPK pathway. Oncotarget, 8, 53276.
      Hawrelak, J. A., Whitten, D. L., & Myers, S. P. (2005). Is Lactobacillus rhamnosus GG effective in preventing the onset of antibiotic-associated diarrhoea: A systematic review. Digestion, 72, 51-56.
      Hayashi, F., Smith, K. D., Ozinsky, A., Hawn, T. R., Eugene, C. Y., Goodlett, D. R., … Aderem, A. (2001). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature, 410, 1099.
      Hölscher, C., Arendse, B., Schwegmann, A., Myburgh, E., & Brombacher, F. (2006). Impairment of alternative macrophage activation delays cutaneous leishmaniasis in nonhealing BALB/c mice. The Journal of Immunology, 176, 1115-1121.
      Hyam, S. R., Lee, I.-A., Gu, W., Kim, K.-A., Jeong, J.-J., Jang, S.-E., … Kim, D.-H. (2013). Arctigenin ameliorates inflammation in vitro and in vivo by inhibiting the PI3K/AKT pathway and polarizing M1 macrophages to M2-like macrophages. European Journal of Pharmacology, 708, 21-29.
      Ip, W. E., Hoshi, N., Shouval, D. S., Snapper, S., & Medzhitov, R. (2017). Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science, 356, 513-519.
      Isidro, R. A., Bonilla, F. J., Pagan, H., Cruz, M. L., Lopez, P., Godoy, L., … Yamamura, Y. (2014). The probiotic mixture VSL# 3 alters the morphology and secretion profile of both polarized and unpolarized human macrophages in a polarization-dependent manner. Journal of Clinical & Cellular Immunology, 5, 1000227.
      Italiani, P., & Boraschi, D. (2014). From monocytes to M1/M2 macrophages: Phenotypical vs. functional differentiation. Frontiers in Immunology, 5, 514.
      Jaffar, N., Okinaga, T., Nishihara, T., & Maeda, T. (2018). Enhanced phagocytosis of Aggregatibacter actinomycetemcomitans cells by macrophages activated by a probiotic Lactobacillus strain. Journal of Dairy Science, 101, 5789-5798.
      Jakubowski, A., Maksimovich, N., Olszanecki, R., Gebska, A., Gasser, H., Podesser, B., … Chlopicki, S. (2009). S-nitroso human serum albumin given after LPS challenge reduces acute lung injury and prolongs survival in a rat model of endotoxemia. Naunyn-Schmiedeberg's Archives of Pharmacology, 379, 281.
      Janssens, S., & Beyaert, R. (2002). A universal role for MyD88 in TLR/IL-1R-mediated signaling. Trends in Biochemical Sciences, 27, 474-482.
      Ji, J., Hu, S.-L., Cui, Z.-W., & Li, W.-F. (2013). Probiotic Bacillus amyloliquefaciens mediate M1 macrophage polarization in mouse bone marrow-derived macrophages. Archives of Microbiology, 195, 349-356.
      Jiménez-Garcia, L., Herránz, S., Luque, A., & Hortelano, S. (2015). Critical role of p38 MAPK in IL-4-induced alternative activation of peritoneal macrophages. European Journal of Immunology, 45, 273-286.
      Kaji, R., Kiyoshima-Shibata, J., Nagaoka, M., Nanno, M., & Shida, K. (2010). Bacterial teichoic acids reverse predominant IL-12 production induced by certain lactobacillus strains into predominant IL-10 production via TLR2-dependent ERK activation in macrophages. The Journal of Immunology, 184, 3505-3513.
      Kawasaki, T., & Kawai, T. (2014). Toll-like receptor signaling pathways. Frontiers in Immunology, 5, 461.
      Korzeniewski, C., & Callewaert, D. M. (1983). An enzyme-release assay for natural cytotoxicity. Journal of Immunological Methods, 64, 313-320.
      Kyrova, K., Stepanova, H., Rychlik, I., Faldyna, M., & Volf, J. (2012). SPI-1 encoded genes of Salmonella Typhimurium influence differential polarization of porcine alveolar macrophages in vitro. BMC Veterinary Research, 8, 115.
      Langrish, C. L., McKenzie, B. S., Wilson, N. J., de Waal Malefyt, R., Kastelein, R. A., & Cua, D. J. (2004). IL-12 and IL-23: Master regulators of innate and adaptive immunity. Immunological Reviews, 202, 96-105.
      Lebeer, S., Claes, I. J., Verhoeven, T. L., Vanderleyden, J., & De Keersmaecker, S. C. (2011). Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine. Microbial Biotechnology, 4, 368-374.
      Lebeer, S., Vanderleyden, J., & De Keersmaecker, S. C. (2010). Host interactions of probiotic bacterial surface molecules: Comparison with commensals and pathogens. Nature Reviews Microbiology, 8, 171.
      Li, J., Chen, G., Ye, P., Wang, S., Zhang, K., Chen, W., … Xia, J. (2011). CCR5 blockade in combination with cyclosporine increased cardiac graft survival and generated alternatively activated macrophages in primates. The Journal of Immunology, 186, 3753-3761. https://doi.org/10.4049/jimmunol.1002143.
      Lucas, M., Zhang, X., Prasanna, V., & Mosser, D. M. (2005). ERK activation following macrophage FcγR ligation leads to chromatin modifications at the IL-10 locus. The Journal of Immunology, 175, 469-477.
      Manzanares, W., Lemieux, M., Langlois, P. L., & Wischmeyer, P. E. (2016). Probiotic and synbiotic therapy in critical illness: A systematic review and meta-analysis. Critical Care, 20, 262.
      Mao, Y., Wang, B., Xu, X., Du, W., Li, W., & Wang, Y. (2015). Glycyrrhizic acid promotes M1 macrophage polarization in murine bone marrow-derived macrophages associated with the activation of JNK and NF-κB. Mediators of Inflammation, 2015, https://doi.org/10.1155/2015/372931.
      Martinez, F. O., Helming, L., & Gordon, S. (2009). Alternative activation of macrophages: An immunologic functional perspective. Annual Review of Immunology, 27, 451-483.
      Matsuzaki, T., & Chin, J. (2000). Modulating immune responses with probiotic bacteria. Immunology and Cell Biology, 78, 67-73.
      Moratalla, A., Caparrós, E., Juanola, O., Portune, K., Puig-Kröger, A., Estrada-Capetillo, L., … Zapater, P. (2016). Bifidobacterium pseudocatenulatum CECT7765 induces an M2 anti-inflammatory transition in macrophages from patients with cirrhosis. Journal of Hepatology, 64, 135-145.
      Mosser, D. M., & Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation. Nature Reviews Immunology, 8, 958.
      Murray, P. J., & Wynn, T. A. (2011). Protective and pathogenic functions of macrophage subsets. Nature Reviews Immunology, 11, 723.
      Paynich, M. L., Jones-Burrage, S. E., & Knight, K. L. (2017). Exopolysaccharide from Bacillus subtilis induces anti-inflammatory M2 macrophages that prevent T cell-mediated disease. The Journal of Immunology, 198, 2689-2698.
      Portielje, J. E., Gratama, J., van Ojik, H. H., Stoter, G., & Kruit, W. H. (2003). IL-12: A promising adjuvant for cancer vaccination. Cancer Immunology, Immunotherapy, 52, 133-144.
      Ranganathan, P. V., Jayakumar, C., & Ramesh, G. (2013). Netrin-1-treated macrophages protect the kidney against ischemia-reperfusion injury and suppress inflammation by inducing M2 polarization. American Journal of Physiology-Renal Physiology, 304, F948-F957.
      Ryu, S.-H., Park, J.-H., Choi, S.-Y., Jeon, H.-Y., Park, J.-I., Kim, J.-Y., … Choi, Y.-K. (2016). The probiotic Lactobacillus prevents Citrobacter rodentium-induced murine colitis in a TLR2-dependent manner. Journal of Microbiology and Biotechnology, 26, 1333-1340.
      Saraiva, M., Christensen, J. R., Veldhoen, M., Murphy, T. L., Murphy, K. M., & O'Garra, A. (2009). Interleukin-10 production by Th1 cells requires interleukin-12-induced STAT4 transcription factor and ERK MAP kinase activation by high antigen dose. Immunity, 31, 209-219. https://doi.org/10.1016/j.immuni.2009.05.012.
      Shida, K., Nanno, M., & Nagata, S. (2011). Flexible cytokine production by macrophages and T cells in response to probiotic bacteria: A possible mechanism by which probiotics exert multifunctional immune regulatory activities. Gut Microbes, 2, 109-114. https://doi.org/10.4161/gmic.2.2.15661.
      Shirey, K. A., Cole, L. E., Keegan, A. D., & Vogel, S. N. (2008). Francisella tularensis live vaccine strain induces macrophage alternative activation as a survival mechanism. The Journal of Immunology, 181, 4159-4167.
      Sica, A., & Mantovani, A. (2012). Macrophage plasticity and polarization: In vivo veritas. The Journal of Clinical Investigation, 122, 787-795.
      Sohn, W., Jun, D. W., Lee, K. N., Lee, H. L., Lee, O. Y., Choi, H. S., & Yoon, B. C. (2015). Lactobacillus paracasei induces M2-dominant Kupffer cell polarization in a mouse model of nonalcoholic steatohepatitis. Digestive Diseases and Sciences, 60, 3340-3350.
      Trinchieri, G. (1998). Interleukin-12: A cytokine at the interface of inflammation and immunity. Advances in Immunology, 70, 83-243.
      Werling, D., & Jungi, T. W. (2003). TOLL-like receptors linking innate and adaptive immune response. Veterinary Immunology and Immunopathology, 91, 1-12.
      Ying, H., Kang, Y., Zhang, H., Zhao, D., Xia, J., Lu, Z., … Shi, L. (2015). MiR-127 modulates macrophage polarization and promotes lung inflammation and injury by activating the JNK pathway. The Journal of Immunology, 194, 1239-1251.
      Zhang, W., Xu, W., & Xiong, S. (2010). Blockade of Notch1 signaling alleviates murine lupus via blunting macrophage activation and M2b polarization. The Journal of Immunology, 184, 6465-6478.
      Zhang, Z., Zhou, Z., Li, Y., Zhou, L., Ding, Q., & Xu, L. (2016). Isolated exopolysaccharides from Lactobacillus rhamnosus GG alleviated adipogenesis mediated by TLR2 in mice. Scientific Reports, 6, 36083.
      Zhou, D., Huang, C., Lin, Z., Zhan, S., Kong, L., Fang, C., & Li, J. (2014). Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cellular Signalling, 26, 192-197.
      Zou, J., & Shankar, N. (2015). Roles of TLR/MyD88/MAPK/NF-κB signaling pathways in the regulation of phagocytosis and proinflammatory cytokine expression in response to E. faecalis infection. PLoS One, 10, e0136947. https://doi.org/10.1371/journal.pone.0136947.
    • Grant Information:
      31472128 International National Natural Science Foundation of China; 31672460 International National Natural Science Foundation of China; 20110101110101 International Special Research Fund for the Ph. D Program of University, China; 2006C12086 International Key Project of Science and Technology of Zhejiang Province, China
    • Contributed Indexing:
      Keywords: Lactobacillus rhamnosus GG; TLRs/MyD88/MAPK; macrophage; polarization
    • الرقم المعرف:
      0 (Myd88 protein, mouse)
      0 (Myeloid Differentiation Factor 88)
      0 (Tlr2 protein, mouse)
      0 (Toll-Like Receptor 2)
    • الموضوع:
      Date Created: 20200812 Date Completed: 20200825 Latest Revision: 20230331
    • الموضوع:
      20240829
    • الرقم المعرف:
      10.1111/asj.13439
    • الرقم المعرف:
      32779289