Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Biophysical methods to quantify bacterial behaviors at oil-water interfaces.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Conrad JC;Conrad JC
  • المصدر:
    Journal of industrial microbiology & biotechnology [J Ind Microbiol Biotechnol] 2020 Oct; Vol. 47 (9-10), pp. 725-738. Date of Electronic Publication: 2020 Aug 02.
  • نوع النشر :
    Journal Article; Review
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: Oxford University Press Country of Publication: Germany NLM ID: 9705544 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5535 (Electronic) Linking ISSN: 13675435 NLM ISO Abbreviation: J Ind Microbiol Biotechnol Subsets: MEDLINE
    • بيانات النشر:
      Publication: 2021- : [Oxford] : Oxford University Press
      Original Publication: Houndmills, Basingstoke, Hampshire, UK : Published by Stockton Press on behalf of the Society for Industrial Microbiology, c1996-
    • الموضوع:
    • نبذة مختصرة :
      Motivated by the need for improved understanding of physical processes involved in bacterial biodegradation of catastrophic oil spills, we review biophysical methods to probe bacterial motility and adhesion at oil-water interfaces. This review summarizes methods that probe bulk, average behaviors as well as local, microscopic behaviors, and highlights opportunities for future work to bridge the gap between biodegradation and biophysics.
    • References:
      Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563. https://doi.org/10.1038/nrmicro.2016.94. (PMID: 10.1038/nrmicro.2016.9427510863)
      Abbasnezhad H, Gray M, Foght JM (2011) Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons. Appl Microbiol Biotechnol 92:653. https://doi.org/10.1007/s00253-011-3589-4. (PMID: 10.1007/s00253-011-3589-421964551)
      Dewangan NK, Conrad JC (2019) Rotating oil droplets driven by motile bacteria at interfaces. Soft Matter 15:9368. https://doi.org/10.1039/C9SM01570A. (PMID: 10.1039/C9SM01570A31693048)
      Ramos G, Cordero ML, Soto R (2020) Bacteria driving droplets. Soft Matter 16:1359. https://doi.org/10.1039/C9SM01839E. (PMID: 10.1039/C9SM01839E31934708)
      Rühs PA, Storz F, López Gómez YA, Haug M, Fischer P (2018) 3D bacterial cellulose biofilms formed by foam templating. npj Biofilms Microbiomes 4:21. https://doi.org/10.1038/s41522-018-0064-3. (PMID: 10.1038/s41522-018-0064-3302108046125463)
      Brooijmans RJ, Pastink MI, Siezen RJ (2009) Hydrocarbon-degrading bacteria: the oil-spill clean-up crew. Microb Biotechnol 2(6):587. https://doi.org/10.1111/j.1751-7915.2009.00151.x. (PMID: 10.1111/j.1751-7915.2009.00151.x212552923815313)
      Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL, Stringfellow WT, Bill M, Conrad ME, Tom LM, Chavarria KL, Alusi TR, Lamendella R, Joyner DC, Spier C, Baelum J, Auer M, Zemla ML, Chakraborty R, Sonnenthal EL, D’haeseleer P, Holman HYN, Osman S, Lu Z, Van Nostrand JD, Deng Y, Zhou J, Mason OU (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330(6001):204. https://doi.org/10.1126/science.1195979. (PMID: 10.1126/science.119597920736401)
      Valentine DL, Kessler JD, Redmond MC, Mendes SD, Heintz MB, Farwell C, Hu L, Kinnaman FS, Yvon-Lewis S, Du M, Chan EW, Tigreros FG, Villanueva CJ (2010) Propane respiration jump-starts microbial response to a deep oil spill. Science 330(6001):208. https://doi.org/10.1126/science.1196830. (PMID: 10.1126/science.119683020847236)
      Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater Horizon oil spill. Appl Environ Microbiol 77(22):7962. https://doi.org/10.1128/AEM.05402-11. (PMID: 10.1128/AEM.05402-11219488343208977)
      Kessler JD, Valentine DL, Redmond MC, Du M, Chan EW, Mendes SD, Quiroz EW, Villanueva CJ, Shusta SS, Werra LM, Yvon-Lewis SA, Weber TC (2011) A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. Science 331(6015):312. https://doi.org/10.1126/science.1199697. (PMID: 10.1126/science.119969721212320)
      King G, Kostka J, Hazen T, Sobecky P (2015) Microbial responses to the Deepwater Horizon oil spill: from coastal wetlands to the deep sea. Annu Rev Mar Sci 7(1):377. https://doi.org/10.1146/annurev-marine-010814-015543. (PMID: 10.1146/annurev-marine-010814-015543)
      Crone TJ, Tolstoy M (2010) Magnitude of the 2010 Gulf of Mexico oil leak. Science 330(6004):634. https://doi.org/10.1126/science.1195840. (PMID: 10.1126/science.119584020929734)
      Graham LJ, Hale C, Maung-Douglass E, Sempier S, Swann L, Wilson M (2016) Chemical dispersants and their role in oil spill response. Oil Spill Sci. Sea Grant Programs Gulf Mex, p 1.
      National Academies of Sciences, Engineering, and Medicine (2020) The use of dispersants in marine oil spill response. The National Academies Press, Washington, DC. https://doi.org/10.17226/25161. (PMID: 10.17226/25161)
      Prince RC (2015) Oil spill dispersants: boon or bane? Environ Sci Technol 49(11):6376. https://doi.org/10.1021/acs.est.5b00961. (PMID: 10.1021/acs.est.5b0096125938731)
      McFarlin KM, Prince RC, Perkins R, Leigh MB (2014) Biodegradation of dispersed oil in Arctic Seawater at -1ºC. PLos One 9(1):e84297. https://doi.org/10.1371/journal.pone.0084297. (PMID: 10.1371/journal.pone.0084297244162113885550)
      National Research Council (2005) Oil spill dispersants: efficacy and effects. The National Academies Press, Washington, DC. https://doi.org/10.17226/11283. (PMID: 10.17226/11283)
      Riehm DA, Rokke DJ, McCormick AV (2016) Water-in-oil microstructures formed by marine oil dispersants in a model crude oil. Langmuir 32(16):3954. https://doi.org/10.1021/acs.langmuir.6b00643. (PMID: 10.1021/acs.langmuir.6b0064327046201)
      Li C, Miller J, Wang J, Koley SS, Katz J (2017) Size distribution and dispersion of droplets generated by impingement of breaking waves on oil slicks. J Geophys Res Oceans 122(10):7938. https://doi.org/10.1002/2017JC013193. (PMID: 10.1002/2017JC013193)
      Li Z, Lee K, Kepkey PE, Mikkelsen O, Pottsmith C (2011) Monitoring dispersed oil droplet size distribution at the Gulf of Mexico Deepwater Horizon spill site. In: International oil spill conference proceedings, abs377.  https://doi.org/10.7901/2169-3358-2011-1-377.
      Camilli R, Reddy CM, Yoerger DR, Van Mooy BAS, Jakuba MV, Kinsey JC, McIntyre CP, Sylva SP, Maloney JV (2010) Tracking hydrocarbon plume transport and biodegradation at deepwater horizon. Science 330(6001):201. https://doi.org/10.1126/science.1195223. (PMID: 10.1126/science.119522320724584)
      Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. History. Environ Sci Technol 45(16):6709. https://doi.org/10.1021/es2013227. (PMID: 10.1021/es2013227216992123155281)
      The Federal Interagency Solutions Group: Oil Budget Calculator Science and Engineering Team. Oil budget calculator technical documentation. http://www.restorethegulf.gov/sites/default/files/documents/pdf/OilBudgetCalc_Full_HQ-Print_111110.pdf . Accessed 6 July 2020.
      North EW, Adams EE, Thessen AE, Schlag Z, He R, Socolofsky SA, Masutani SM, Peckham SD (2015) The influence of droplet size and biodegradation on the transport of subsurface oil droplets during the Deepwater Horizon spill: a model sensitivity study. Environ Res Lett 10(2):024016. https://doi.org/10.1088/1748-9326/10/2/024016. (PMID: 10.1088/1748-9326/10/2/024016)
      Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13(3):249. https://doi.org/10.1016/S0958-1669(02)00316-6. (PMID: 10.1016/S0958-1669(02)00316-612180101)
      Karlapudi AP, Venkateswarulu T, Tammineedi J, Kanumuri L, Ravuru BK, ramu Dirisala V, Kodali VP, (2018) Role of biosurfactants in bioremediation of oil pollution-a review. Petroleum 4(3):241. https://doi.org/10.1016/j.petlm.2018.03.007. (PMID: 10.1016/j.petlm.2018.03.007)
      Schwehr KA, Xu C, Chiu MH, Zhang S, Sun L, Lin P, Beaver M, Jackson C, Agueda O, Bergen C, Chin WC, Quigg A, Santschi PH (2018) Protein: polysaccharide ratio in exopolymeric substances controlling the surface tension of seawater in the presence or absence of surrogate Macondo oil with and without Corexit. Mar Chem 206:84. https://doi.org/10.1016/j.marchem.2018.09.003. (PMID: 10.1016/j.marchem.2018.09.003)
      White AR, Jalali M, Boufadel MC, Sheng J (2020) Bacteria forming drag-increasing streamers on a drop implicates complementary fates of rising deep-sea oil droplets. Sci Rep 10:4305. https://doi.org/10.1038/s41598-020-61214-9. (PMID: 10.1038/s41598-020-61214-9321524107062730)
      White AR, Jalali M, Sheng J (2020) Hydrodynamics of a rising oil droplet with bacterial extracellular polymeric substance (EPS) streamers using a microfluidic microcosm. Front Mar Sci 7:294. https://doi.org/10.3389/fmars.2020.00294. (PMID: 10.3389/fmars.2020.00294)
      Desai N, Dabiri S, Ardekani AM (2018) Nutrient uptake by chemotactic bacteria in presence of rising oil drops. Int J Multiphase Flow 108:156. https://doi.org/10.1016/j.ijmultiphaseflow.2018.06.016. (PMID: 10.1016/j.ijmultiphaseflow.2018.06.016)
      Kleindienst S, Seidel M, Ziervogel K, Grim S, Loftis K, Harrison S, Malkin SY, Perkins MJ, Field J, Sogin ML, Dittmar T, Passow U, Medeiros PM, Joye SB (2015) Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proc Natl Acad Sci 112(48):14900. https://doi.org/10.1073/pnas.1507380112. (PMID: 10.1073/pnas.150738011226553985)
      Kleindienst S, Grim S, Sogin M, Bracco A, Crespo-Medina M, Joye SB (2016) Diverse, rare microbial taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume. ISME J 10:400. https://doi.org/10.1038/ismej.2015.121. (PMID: 10.1038/ismej.2015.12126230048)
      Hamdan LJ, Fulmer PA (2011) Effects of COREXIT ® EC9500A on bacteria from a beach oiled by the Deepwater Horizon spill. Aquat Microb Ecol 63(2):101. https://doi.org/10.3354/ame01482. (PMID: 10.3354/ame01482)
      Sun X, Chu L, Mercando E, Romero I, Hollander D, Kostka JE (2019) Dispersant enhances hydrocarbon degradation and alters the structure of metabolically active microbial communities in shallow seawater from the Northeastern Gulf of Mexico. Front Microbiol 10:2387. https://doi.org/10.3389/fmicb.2019.02387. (PMID: 10.3389/fmicb.2019.02387317497696842959)
      Bælum J, Borglin S, Chakraborty R, Fortney JL, Lamendella R, Mason OU, Auer M, Zemla M, Bill M, Conrad ME, Malfatti SA, Tringe SG, Holman HY, Hazen TC, Jansson JK (2012) Deep-sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill. Environ Microbiol 14(9):2405. https://doi.org/10.1111/j.1462-2920.2012.02780.x. (PMID: 10.1111/j.1462-2920.2012.02780.x22616650)
      Tremblay J, Yergeau E, Fortin N, Cobanli S, Elias M, Tl King, Lee K, Greer CW (2017) Chemical dispersants enhance the activity oof oil- and gas condensate-degrading marine bacteria. ISME J 11:2793. https://doi.org/10.1038/ismej.2017.129. (PMID: 10.1038/ismej.2017.129288001375702735)
      Mulkins-Phillips GJ, Stewart JE (1974) Effect of four dispersants on biodegradation and growth of bacteria on crude oil. Appl Microbiol 28:547.  https://aem.asm.org/content/aem/28/4/547.full.pdf. (PMID: 10.1128/AEM.28.4.547-552.1974)
      Techtmann SM, Zhuang M, Campo P, Holder E, Elk M, Hazen TC, Conmy R, Santo Domingo JW (2017) Corexit 9500 enhances oil biodegradation and changes active bacterial community structure of oil-enriched microcosms. Appl Environ Microbiol 83(10):e03462-16. https://doi.org/10.1128/AEM.03462-16. (PMID: 10.1128/AEM.03462-16282835275411496)
      Daly KL, Passow U, Chanton J, Hollander D (2016) Assessing the impacts of oil-associated marine snow formation and sedimentation during and after the Deepwater Horizon oil spill. Anthropocene 13:18. https://doi.org/10.1016/j.ancene.2016.01.006. (PMID: 10.1016/j.ancene.2016.01.006)
      Quigg A, Passow U, Daly KL, Burd A, Hollander DJ, Schwing PT, Lee K (2020) Marine oil snow sedimentation and flocculent accumulation (MOSSFA) events: learning from the past to predict the future. In: Murawski S et al (eds) Deep oil spills. Springer, Cham.
      Passow U, Ziervogel K, Asper V, Diercks A (2012) Marine snow formation in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Res Lett 7(3):035301. https://doi.org/10.1088/1748-9326/7/3/035301. (PMID: 10.1088/1748-9326/7/3/035301)
      Fu J, Gong Y, Zhao X, O’reilly SE, Zhao D (2014) Effects of oil and dispersant on formation of marine oil snow and transport of oil hydrocarbons. Environ Sci Technol 48(24):14392. https://doi.org/10.1021/es5042157. (PMID: 10.1021/es504215725420231)
      Passow U, Sweet J, Quigg A (2017) How the dispersant Corexit impacts the formation of sinking marine oil snow. Mar Pollut Bull 125(1):139. https://doi.org/10.1016/j.marpolbul.2017.08.015. (PMID: 10.1016/j.marpolbul.2017.08.01528807420)
      Suja LD, Chen X, Summers S, Paterson DM, Gutierrez T (2019) Chemical dispersant enhances microbial exopolymer (EPS) production and formation of marine oil/dispersant snow in surface waters of the subarctic Northeast Atlantic. Front Microbiol 10:553. https://doi.org/10.3389/fmicb.2019.00553. (PMID: 10.3389/fmicb.2019.00553309491506435573)
      Bookstaver M, Bose A, Tripathi A (2015) Interaction of Alcanivorax borkumensis with a surfactant decorated oil-water interface. Langmuir 31(21):5875. https://doi.org/10.1021/acs.langmuir.5b00688. (PMID: 10.1021/acs.langmuir.5b0068825966795)
      Godfrin MP, Sihlabela M, Bose A, Tripathi A (2018) Behavior of marine bacteria in clean environment and oil spill conditions. Langmuir 34(30):9047. https://doi.org/10.1021/acs.langmuir.8b01319. (PMID: 10.1021/acs.langmuir.8b0131929974750)
      Abbasi A, Bothun GD, Bose A (2018) Attachment of Alcanivorax borkumensis to hexadecane-in-artificial sea water emulsion droplets. Langmuir 34(18):5352. https://doi.org/10.1021/acs.langmuir.8b00082. (PMID: 10.1021/acs.langmuir.8b0008229656641)
      Omarova M, Swientoniewski LT, Mkam Tsengam IK, Blake DA, John V, McCormick A, Bothun GD, Raghavan SR, Bose A (2019) Biofilm formation by hydrocarbon-degrading marine bacteria and its effects on oil dispersion. ACS Sustain Chem Eng 7(17):14490. https://doi.org/10.1021/acssuschemeng.9b01923. (PMID: 10.1021/acssuschemeng.9b01923)
      Kapellos G (2017) Chapter 2-microbial strategies for oil biodegradation. In: Becker SM (ed) Modeling of microscale transport in biological processes. Academic Press, pp 19–39. https://doi.org/10.1016/B978-0-12-804595-4.00002-X.
      Vergeynst L, Wegeberg S, Aamand J, Lassen P, Gosewinkel U, Fritt-Rasmussen J, Gustavson K, Mosbech A (2018) Biodegradation of marine oil spills in the Arctic with a Greenland perspective. SciTotal Environ 626:1243. https://doi.org/10.1016/j.scitotenv.2018.01.173. (PMID: 10.1016/j.scitotenv.2018.01.173)
      Krasowska A, Sigler K (2014) How microorganisms use hydrophobicity and what does this mean for human needs? Front Cell Infect Microbiol 4:112. https://doi.org/10.3389/fcimb.2014.00112. (PMID: 10.3389/fcimb.2014.00112251916454137226)
      Alexander TE, Lozeau LD, Camesano TA (2019) QCM-D characterization of time-dependence of bacterial adhesion. Cell Surf 5:100024. https://doi.org/10.1016/j.tcsw.2019.100024. (PMID: 10.1016/j.tcsw.2019.100024327431407389184)
      Dufrêne YF (2014) Atomic force microscopy in microbiology: new structural and functional insights into the microbial cell surface. mBio 5(4):e01363-14. https://doi.org/10.1128/mBio.01363-14. (PMID: 10.1128/mBio.01363-14250537854120197)
      Wick LY, Pasche N, Bernasconi SM, Pelz O, Harms H (2003) Characterization of multiple-substrate utilization by anthracene-degrading Mycobacterium frederiksbergense LB501T. Appl Environ Microbiol 69(10):6133. https://doi.org/10.1128/AEM.69.10.6133-6142.2003. (PMID: 10.1128/AEM.69.10.6133-6142.200314532072201237)
      Wu S (1971) Calculation of interfacial tensions in polymer systems. J Polym Sci 43:19. https://doi.org/10.1002/polc.5070340105. (PMID: 10.1002/polc.5070340105)
      Owens D, Wendt R (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741. https://doi.org/10.1002/app.1969.070130815. (PMID: 10.1002/app.1969.070130815)
      Kaelble DH (1970) Dispersion-polar surface tension properties of organic solids. J Adhes 2:66. https://doi.org/10.1080/0021846708544582. (PMID: 10.1080/0021846708544582)
      Rabel W (1971) Einige Aspekte der Benetzungstheorie und ihre Anwendung auf die Untersuchung und Veränderung der Oberflächeneigenschaften von Polymeren. Farbe Lack 77:997.
      Tuson HH, Weibel DB (2013) Bacteria-surface interactions. Soft Matter 9:4368. https://doi.org/10.1039/C3SM27705D. (PMID: 10.1039/C3SM27705D239301343733390)
      Dewangan NK, Conrad JC (2018) Adhesion of Marinobacter hydrocarbonoclasticus to surfactant-decorated dodecane droplets. Langmuir 34(46):14012. https://doi.org/10.1021/acs.langmuir.8b02071. (PMID: 10.1021/acs.langmuir.8b0207130354150)
      Rosenberg M (2006) Microbial adhesion to hydrocarbons: twenty-five years of doing MATH. FEMS Microbiol Lett 262(2):129. https://doi.org/10.1111/j.1574-6968.2006.00291.x. (PMID: 10.1111/j.1574-6968.2006.00291.x16923066)
      Rosenberg M (1984) Bacterial adherence to hydrocarbons: a useful technique for studying cell surface hydrophobicity. FEMS Microbiol Lett 22(3):289. https://doi.org/10.1111/j.1574-6968.1984.tb00743.x. (PMID: 10.1111/j.1574-6968.1984.tb00743.x)
      Rosenberg M (1984) Ammonium sulphate enhances adherence of Escherichia coli J-5 to hydrocarbon and polystyrene. FEMS Microbiol Lett 25(1):41. https://doi.org/10.1111/j.1574-6968.1984.tb01372.x. (PMID: 10.1111/j.1574-6968.1984.tb01372.x)
      Zoueki CW, Ghoshal S, Tufenkji N (2010) Bacterial adhesion to hydrocarbons: role of asphaltenes and resins. Colloids Surf B Biointerfaces 79(1):219. https://doi.org/10.1016/j.colsurfb.2010.03.054. (PMID: 10.1016/j.colsurfb.2010.03.054)
      Chakraborty S, Mukherji S, Mukherji S (2010) Surface hydrophobicity of petroleum hydrocarbon degrading Burkholderia strains and their interactions with NAPLs and surfaces. Colloids Surf B Biointerfaces 78(1):101. https://doi.org/10.1016/j.colsurfb.2010.02.019. (PMID: 10.1016/j.colsurfb.2010.02.01920236810)
      Dorobantu LS, Yeung AKC, Foght JM, Gray MR (2004) Stabilization of oil-water emulsions by hydrophobic bacteria. Appl Environ Microbiol 70(10):6333. https://doi.org/10.1128/AEM.70.10.6333-6336.2004. (PMID: 10.1128/AEM.70.10.6333-6336.200415466587522095)
      Goldberg S, Doyle RJ, Rosenberg M (1990) Mechanism of enhancement of microbial cell hydrophobicity by cationic polymers. J Bacteriol 172(10):5650. https://doi.org/10.1128/jb.172.10.5650-5654.1990. (PMID: 10.1128/jb.172.10.5650-5654.19902211502526878)
      Baldi F, Ivošević N, Minacci A, Pepi M, Fani R, Svetličić V, Žutić V (1999) Adhesion of Acinetobacter venetianus to diesel fuel droplets studied with in situ electrochemical and molecular probes. Appl Environ Microbiol 65(5):2041. https://doi.org/10.1128/AEM.65.5.2041-2048.1999. (PMID: 10.1128/AEM.65.5.2041-2048.19991022399891295)
      Rosenberg M, Bayer EA, Delarea J, Rosenberg E (1982) Role of thin fimbriae in adherence and growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. Appl Environ Microbiol 44(4):929. (PMID: 10.1128/AEM.44.4.929-937.1982)
      Rodrigues DF, Elimelech M (2009) Role of type 1 fimbriae and mannose in the development of Escherichia coli K12 biofilm: from initial cell adhesion to biofilm formation. Biofouling 25(5):401. https://doi.org/10.1080/08927010902833443  . (PMID: 10.1080/0892701090283344319306144)
      McLay RB, Nguyen HN, Jaimes-Lizcano YA, Dewangan NK, Alexandrova S, Rodrigues DF, Cirino PC, Conrad JC (2018) Level of fimbriation alters the adhesion of Escherichia coli bacteria to interfaces. Langmuir 34(3):1133. https://doi.org/10.1021/acs.langmuir.7b02447. (PMID: 10.1021/acs.langmuir.7b0244728976770)
      Zoueki CW, Tufenkji N, Ghoshal S (2010) A modified microbial adhesion to hydrocarbons assay to account for the presence of hydrocarbon droplets. J Colloid Interface Sci 344(2):492. https://doi.org/10.1016/j.jcis.2009.12.043. (PMID: 10.1016/j.jcis.2009.12.04320129613)
      Berry JD, Neeson MJ, Dagastine RR, Chan DY, Tabor RF (2015) Measurement of surface and interfacial tension using pendant drop tensiometry. J Colloid Interface Sci 454:226. https://doi.org/10.1016/j.jcis.2015.05.012. (PMID: 10.1016/j.jcis.2015.05.01226037272)
      Klein B, Bouriat P, Goulas P, Grimaud R (2010) Behavior of Marinobacter hydrocarbonoclasticus SP17 cells during initiation of biofilm formation at the alkane-water interface. Biotechnol Bioeng 105(3):461. https://doi.org/10.1002/bit.22577. (PMID: 10.1002/bit.2257719816979)
      Kang Z, Yeung A, Foght JM, Gray MR (2008) Mechanical properties of hexadecane-water interfaces with adsorbed hydrophobic bacteria. Colloids Surf B Biointerfaces 62(2):273. https://doi.org/10.1016/j.colsurfb.2007.10.021. (PMID: 10.1016/j.colsurfb.2007.10.02118093811)
      Niepa THR, Vaccari L, Leheny RL, Goulian M, Lee D, Steve KJ (2017) Films of bacteria at interfaces (FBI): remodeling of fluid interfaces by Pseudomonas aeruginosa. Sci Rep 7:17864. https://doi.org/10.1038/s41598-017-17721-3. (PMID: 10.1038/s41598-017-17721-3292592065736630)
      Vaccari L, Allan DB, Sharifi-Mood N, Singh AR, Leheny RL, Stebe KJ (2015) Films of bacteria at interfaces: three stages of behaviour. Soft Matter 11:6062. https://doi.org/10.1039/C5SM00696A. (PMID: 10.1039/C5SM00696A26135879)
      Rühs P, Böcker L, Inglis R, Fischer P (2014) Studying bacterial hydrophobicity and biofilm formation at liquid-liquid interfaces through interfacial rheology and pendant drop tensiometry. Colloids Surf B Biointerfaces 117:174. https://doi.org/10.1016/j.colsurfb.2014.02.023. (PMID: 10.1016/j.colsurfb.2014.02.02324632390)
      Lin YJ, Barman S, He P, Zhang Z, Christopher GF, Biswal SL (2018) Combined interfacial shear rheology and microstructure visualization of asphaltenes at air-water and oil-water interfaces. J Rheol 62(1):1. https://doi.org/10.1122/1.5009188. (PMID: 10.1122/1.5009188)
      Hollenbeck EC, Fong JCN, Lim JY, Yildiz FH, Fuller GG, Cegelski L (2014) Molecular determinants of mechanical properties of V. cholerae biofilms at the air-liquid interface. Biophys J 107:2245. https://doi.org/10.1016/j.bpj.2014.10.015. (PMID: 10.1016/j.bpj.2014.10.015254182934241461)
      Qi L, Christopher GF (2019) Role of flagella, type IV pili, biosurfactants, and extracellular polymeric substance polysaccharides on the formation of pellicles by Pseudomonas aeruginosa. Langmuir 35(15):5294. https://doi.org/10.1021/acs.langmuir.9b00271. (PMID: 10.1021/acs.langmuir.9b0027130883129)
      Schlafer S, Meyer RL (2017) Confocal microscopy imaging of the biofilm matrix. What’s next in microbiology methods? Emerging methods. J Microbiol Methods 138:50. https://doi.org/10.1016/j.mimet.2016.03.002. (PMID: 10.1016/j.mimet.2016.03.00226979645)
      Reichhardt C, Parsek MR (2019) Confocal laser scanning microscopy for analysis of Pseudomonas aeruginosa biofilm architecture and matrix localization. Front Microbiol 10:677. https://doi.org/10.3389/fmicb.2019.00677. (PMID: 10.3389/fmicb.2019.00677310012406454187)
      Reddy PG, Singh HD, Roy PK, Baruah JN (1982) Predominant role of hydrocarbon solubilization in the microbial uptake of hydrocarbons. Biotechnol Bioeng 24(6):1241. https://doi.org/10.1002/bit.260240603. (PMID: 10.1002/bit.26024060318546423)
      Macedo AJ, Kuhlicke U, Neu TR, Timmis KN, Abraham WR (2005) Three stages of a biofilm community developing at the liquid-liquid interface between polychlorinated biphenyls and water. Appl Environ Microbiol 71(11):7301. https://doi.org/10.1128/AEM.71.11.7301-7309.2005. (PMID: 10.1128/AEM.71.11.7301-7309.2005162697721287684)
      Grimaud R (2010) Biofilm development at interfaces between hydrophobic organic compounds and water. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_102. (PMID: 10.1007/978-3-540-77587-4_102)
      Davis KM, Isberg RR (2016) Defining heterogeneity within bacterial populations via single cell approaches. BioEssays 38(8):782. https://doi.org/10.1002/bies.201500121. (PMID: 10.1002/bies.20150012127273675)
      Stocker R (2012) Marine microbes see a sea of gradients. Science 338(6107):628. https://doi.org/10.1126/science.1208929. (PMID: 10.1126/science.120892923118182)
      Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179(1):298. https://doi.org/10.1006/jcis.1996.0217. (PMID: 10.1006/jcis.1996.0217)
      Gibiansky ML, Conrad JC, Jin F, Gordon VD, Motto DA, Mathewson MA, Stopka WG, Zelasko DC, Shrout JD, Wong GCL (2010) Bacteria use type IV pili to walk upright and detach from surfaces. Science 330(6001):197. https://doi.org/10.1126/science.1194238. (PMID: 10.1126/science.119423820929769)
      Conrad JC, Gibiansky ML, Jin F, Gordon VD, Motto DA, Mathewson MA, Stopka WG, Zelasko DC, Shrout JD, Wong GCL (2011) Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa. Biophys J 100(7):1608. https://doi.org/10.1016/j.bpj.2011.02.020. (PMID: 10.1016/j.bpj.2011.02.020214635733072661)
      Jin F, Conrad JC, Gibiansky ML, Wong GCL (2011) Bacteria use type-IV pili to slingshot on surfaces. Proc Natl Acad Sci 108(31):12617. https://doi.org/10.1073/pnas.1105073108. (PMID: 10.1073/pnas.110507310821768344)
      de Anda J, Lee EY, Lee CK, Bennett RR, Ji X, Soltani S, Harrison MC, Baker AE, Luo Y, Chou T, O’Toole GA, Armani AM, Golestanian R, Wong GCL (2017) High-Speed “4D” computational microscopy of bacterial surface motility. ACS Nano 11(9):9340. https://doi.org/10.1021/acsnano.7b04738. (PMID: 10.1021/acsnano.7b04738288367615978429)
      Vigeant MAS, Ford RM, Wagner M, Tamm LK (2002) Reversible and irreversible adhesion of motile Escherichia coli cells analyzed by total internal reflection aqueous fluorescence microscopy. Appl Environ Microbiol 68(6):2794. https://doi.org/10.1016/j.bpj.2011.02.020. (PMID: 10.1016/j.bpj.2011.02.02012039734123977)
      De La Fuente L, Montanes E, Meng Y, Li Y, Burr TJ, Hoch HC, Wu M (2007) Assessing adhesion forces of type i and type iv pili of Xylella fastidiosa bacteria by use of a microfluidic flow chamber. Appl Environ Microbiol 73(8):2690. https://doi.org/10.1128/AEM.02649-06. (PMID: 10.1128/AEM.02649-06)
      Sharma S, Conrad JC (2014) Attachment from flow of Escherichia coli bacteria onto silanized glass substrates. Langmuir 30(37):11147. https://doi.org/10.1021/la502313y. (PMID: 10.1021/la502313y25153944)
      Song L, Sjollema J, Sharma PK, Kaper HJ, van der Mei HC, Busscher HJ (2014) Nanoscopic vibrations of bacteria with different cell-wall properties adhering to surfaces under flow and static conditions. ACS Nano 8(8):8457. https://doi.org/10.1021/nn5030253. (PMID: 10.1021/nn503025325025495)
      Cooley BJ, Dellos-Nolan S, Dhamani N, Todd R, Waller W, Wozniak D, Gordon VD (2016) Asymmetry and inequity in the inheritance of a bacterial adhesive. New J Phys 18(4):045019. https://doi.org/10.1088/1367-2630/18/4/045019. (PMID: 10.1088/1367-2630/18/4/045019)
      Sharma S, Jaimes-Lizcano YA, McLay RB, Cirino PC, Conrad JC (2016) Subnanometric roughness affects the deposition and mobile adhesion of Escherichia coli on silanized glass surfaces. Langmuir 32(21):5422. https://doi.org/10.1021/acs.langmuir.6b00883. (PMID: 10.1021/acs.langmuir.6b0088327158837)
      Drescher K, Dunkel J, Nadell CD, van Teeffelen S, Grnja I, Wingreen NS, Stone HA, Bassler BL (2016) Architectural transitions in Vibrio cholerae biofilms at single-cell resolution. Proc Natl Acad Sci 113(14):E2066. https://doi.org/10.1073/pnas.1601702113. (PMID: 10.1073/pnas.160170211326933214)
      Pearce P, Song B, Skinner DJ, Mok R, Hartmann R, Singh PK, Jeckel H, Oishi JS, Drescher K, Dunkel J (2019) Flow-induced symmetry breaking in growing bacterial biofilms. Phys Rev Lett 123:258101. https://doi.org/10.1103/PhysRevLett.123.258101. (PMID: 10.1103/PhysRevLett.123.25810131922766)
      DiLuzio WR, Turner L, Mayer M, Garstecki P, Weibel DB, Berg HC, Whitesides GM (2005) Escherichia coli swim on the right hand side. Nature 435:1271. https://doi.org/10.1038/nature03660. (PMID: 10.1038/nature0366015988531)
      Berke AP, Turner L, Berg HC, Lauga E (2008) Hydrodynamic attraction of swimming microorganisms by surfaces. Phys Rev Lett 101:038102. https://doi.org/10.1103/PhysRevLett.101.038102. (PMID: 10.1103/PhysRevLett.101.03810218764299)
      Li G, Tang JX (2009) Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion. Phys Rev Lett 103(7):078101. https://doi.org/10.1103/PhysRevLett.103.078101. (PMID: 10.1103/PhysRevLett.103.078101197926892818302)
      Bianchi S, Saglimbeni F, Di Leonardo R (2017) Holographic imaging reveals the mechanism of wall entrapment in swimming bacteria. Phys Rev X 7(1):011010. https://doi.org/10.1103/PhysRevX.7.011010. (PMID: 10.1103/PhysRevX.7.011010)
      Lauga E, DiLuzio WR, Whitesides GM, Stone HA (2006) Swimming in circles: motion of bacteria near solid boundaries. Biophys J 90(2):400. https://doi.org/10.1529/biophysj.105.069401. (PMID: 10.1529/biophysj.105.06940116239332)
      Di Leonardo R, Dell’Arciprete D, Angelani L, Iebba V (2011) Swimming with an Image. Phys Rev Lett 106:038101. https://doi.org/10.1103/PhysRevLett.106.038101. (PMID: 10.1103/PhysRevLett.106.03810121405301)
      Bianchi S, Saglimbeni F, Frangipane G, Dell’Arciprete D, Di Leonardo R (2019) 3D dynamics of bacteria wall entrapment at a water-air interface. Soft Matter 15:3397. https://doi.org/10.1039/C9SM00077A. (PMID: 10.1039/C9SM00077A30933209)
      Lighthill MJ (1952) On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun Pure Appl Math 5(2):109. https://doi.org/10.1002/cpa.3160050201. (PMID: 10.1002/cpa.3160050201)
      Lauga E, Powers TR (2009) The hydrodynamics of swimming microorganisms. Rep Prog Phys 72(9):096601. https://doi.org/10.1088/0034-4885/72/9/096601. (PMID: 10.1088/0034-4885/72/9/096601)
      Qian C, Wong CC, Swarup S, Chiam KH (2013) Bacterial tethering analysis reveals a “Run-Reverse-Turn” mechanism for Pseudomonas species motility. Appl Environ Microbiol 79(15):4734. https://doi.org/10.1128/AEM.01027-13. (PMID: 10.1128/AEM.01027-13237288203719506)
      Deng J, Molaei M, Chisholm NG, Stebe KJ (2020) Motile bacteria at oil-water interfaces: Pseudomonas aeruginosa. Langmuir 36(25):6888. https://doi.org/10.1021/acs.langmuir.9b03578. (PMID: 10.1021/acs.langmuir.9b0357832097012)
      Wu KT, Hsiao YT, Woon WY (2018) Entrapment of pusher and puller bacteria near a solid surface. Phys Rev E 98:052407. https://doi.org/10.1103/PhysRevE.98.052407. (PMID: 10.1103/PhysRevE.98.052407)
      Liao Q, Subramanian G, DeLisa MP, Koch DL, Wu M (2007) Pair velocity correlations among swimming Escherichia coli bacteria are determined by force-quadrupole hydrodynamic interactions. Phys Fluids 19(6):061701. https://doi.org/10.1063/1.2742423. (PMID: 10.1063/1.2742423)
      Vaccari L, Molaei M, Leheny RL, Stebe KJ (2018) Cargo carrying bacteria at interfaces. Soft Matter 14:5643. https://doi.org/10.1039/C8SM00481A. (PMID: 10.1039/C8SM00481A29943791)
      Ahmadzadegan A, Wang S, Vlachos PP, Ardekani AM (2019) Hydrodynamic attraction of bacteria to gas and liquid interfaces. Phys Rev E 100:062605. https://doi.org/10.1103/PhysRevE.100.062605. (PMID: 10.1103/PhysRevE.100.06260531962476)
      Desai N, Ardekani AM (2020) Biofilms at interfaces: microbial distribution in floating films. Soft Matter 16:1731. https://doi.org/10.1039/C9SM02038A. (PMID: 10.1039/C9SM02038A31976509)
      Hori K, Watanabe H, Ishii S, Tanji Y, Unno H (2008) Monolayer adsorption of a “Bald” mutant of the highly adhesive and hydrophobic bacterium Acinetobacter sp. Strain Tol 5 to a hydrocarbon surface. Appl Environ Microbiol 74(8):2511. https://doi.org/10.1128/AEM.02229-07. (PMID: 10.1128/AEM.02229-07183104222293132)
      Dasgupta S, Katava M, Faraj M, Auth T, Gompper G (2014) Capillary assembly of microscale ellipsoidal, cuboidal, and spherical particles at interfaces. Langmuir 30(40):11873. https://doi.org/10.1021/la502627h. (PMID: 10.1021/la502627h25226046)
      Dewangan NK, Conrad JC (2020) Bacterial motility enhances adhesion to oil droplets.  arXiv:2007.13894.
      Binks BP (2002) Particles as surfactants-similarities and differences. Curr Opin Colloid Interface Sci 7(1):21. https://doi.org/10.1016/S1359-0294(02)00008-0. (PMID: 10.1016/S1359-0294(02)00008-0)
      Son K, Menolascina F, Stocker R (2016) Speed-dependent chemotactic precision in marine bacteria. Proc Natl Acad Sci 113(31):8624. https://doi.org/10.1073/pnas.1602307113. (PMID: 10.1073/pnas.160230711327439872)
      Wang X, Lanning LM, Ford RM (2016) Enhanced retention of chemotactic bacteria in a pore network with residual NAPL contamination. Environ Sci Technol 50(1):165. https://doi.org/10.1021/acs.est.5b03872. (PMID: 10.1021/acs.est.5b0387226633578)
      Haiko J, Westerlund-Wikström B (2013) The role of the bacterial flagellum in adhesion and virulence. Biology 2:1242. https://doi.org/10.3390/biology2041242. (PMID: 10.3390/biology2041242248332234009794)
      Friedlander RS, Vogel N, Aizenberg J (2015) Role of flagella in adhesion of Escherichia coli to abiotic surfaces. Langmuir 31(22):6137. https://doi.org/10.1021/acs.langmuir.5b00815. (PMID: 10.1021/acs.langmuir.5b008152594539925945399)
      Das T, Sharma PK, Busscher HJ, van der Mei HC, Krom BP (2010) Role of extracellular DNA in initial bacterial adhesion and surface aggregation. Appl Environ Microbiol 76(10):3405. https://doi.org/10.1128/AEM.03119-09. (PMID: 10.1128/AEM.03119-09203638022869138)
      O’Toole GA, Wong GC (2016) Sensational biofilms: surface sensing in bacteria. Curr Opin Microbiol 30:139. https://doi.org/10.1016/j.mib.2016.02.004. (PMID: 10.1016/j.mib.2016.02.004269680164843124)
      Müller S, Nebe-von Caron G (2010) Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol Rev 34(4):554. https://doi.org/10.1111/j.1574-6976.2010.00214.x. (PMID: 10.1111/j.1574-6976.2010.00214.x20337722)
      Geng J, Henry N (2011) Short time-scale bacterial adhesion dynamics. In: Linke D, Goldman A (eds) Bacterial adhesion. Advances in experimental medicine and biology, vol 715. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0940-9_20. (PMID: 10.1007/978-94-007-0940-9_20)
      Ambriz-Aviña V, Contreas-Garduño JA, Pedraza-Reyes M (2014) Applications of flow cytometry to characterize bacterial physiological responses. BioMed Res Int 2014:461941. https://doi.org/10.1155/2014/461941. (PMID: 10.1155/2014/461941252767884174974)
      Kalyuzhnaya M, Lidstrom M, Chistoserdova L (2008) Real-time detection of actively metabolizing microbes by redox sensing as applied to methylotroph populations in Lake Washington. ISME J 2:696. https://doi.org/10.1038/ismej.2008.32. (PMID: 10.1038/ismej.2008.3218607374)
      Conrad JC, Poling-Skutvik R (2018) Confined flow: consequences and implications for bacteria and biofilms. Annual review of chemical and biomolecular engineering 9:175. https://doi.org/10.1146/annurev-chembioeng-060817-084006. (PMID: 10.1146/annurev-chembioeng-060817-08400629561646)
    • Grant Information:
      2015-V-328 Gulf of Mexico Research Initiative; E-1869 Welch Foundation
    • Contributed Indexing:
      Keywords: Accumulation; Adhesion; Motility; Oil–water Interface
    • الرقم المعرف:
      059QF0KO0R (Water)
    • الموضوع:
      Date Created: 20200804 Date Completed: 20210401 Latest Revision: 20210401
    • الموضوع:
      20221213
    • الرقم المعرف:
      10.1007/s10295-020-02293-5
    • الرقم المعرف:
      32743734