Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Few-cycle localized plasmon oscillations.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: PubMed not MEDLINE; MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • نبذة مختصرة :
      The generation of few-cycle laser pulses proved to be a key enabling technology in strong-field physics and ultrafast science. The question naturally arises whether one can induce few-cycle localized plasmon oscillations in optical near-fields. Here, we perform a comparative study of different plasmonic nanoresonators illuminated by few-cycle pulses. We analyze the number of cycles (NOC) of the plasmonic field, the near-field enhancement (NFE) as well as the figure of merit NFE/NOC. The pulse length dependence of these quantities is also investigated. Throughout the inspected pulse-length interval silica-gold and silica-silver core-shell monomers have the potential to preserve the NOC of the incoming pulse, silver bow-ties result in the highest NFE, whereas gold core-shell dimers have the highest NFE/NOC. Based on the analysis, silver bow-ties, gold core-shell and silver nanorod dimers proved to be the most suitable for few-cycle near-field amplification.
    • References:
      Dombi, P. et al. Direct measurement and analysis of the carrier-envelope phase in light pulses approaching the single-cycle regime. New J. Phys. 6, 39 (2004). (PMID: 10.1088/1367-2630/6/1/039)
      Dombi, P. et al. Pulse compression with time-domain optimized chirped mirrors. Opt. Express 13, 10888–10894 (2005). (PMID: 10.1364/OPEX.13.010888)
      Davis, T. J. & Gómez, D. E. An algebraic model of localized surface plasmons and their interactions. Rev. Mod. Phys. 89, 011003 (2017). (PMID: 10.1103/RevModPhys.89.011003)
      Verma, S. S. & Sekhon, J. S. Influence of aspect ratio and surrounding medium on localized surface plasmon resonance (LSPR) of gold nanorod. J. Opt. 41, 89–93 (2012). (PMID: 10.1007/s12596-012-0068-y)
      Prodan, E. & Nordlander, P. Structural tunability of the plasmon resonances in metallic nanoshells. Nano Lett. 3, 543–547 (2003). (PMID: 10.1021/nl034030m)
      Schelm, S. & Smith, G. B. Internal electric field densities of metal nanoshells. J. Phys. Chem. B 109, 1689–1694 (2005). (PMID: 10.1021/jp0450686)
      Tam, F., Chen, A. L., Kundu, J., Wang, H. & Halas, N. Mesoscopic nanoshells: Geometry-dependent plasmon resonances beyond the quasistatic limit. J. Chem. Phys. 127, 204703 (2007). (PMID: 10.1063/1.2796169)
      Schelm, S. & Smith, G. B. Evaluation of the limits of resonance tunability in metallic nanoshells with a spectral averaging method. J. Opt. Soc. Am. A 22, 1288–1292 (2005). (PMID: 10.1364/JOSAA.22.001288)
      Wang, F. & Shen, Y. R. General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 97, 206806 (2006). (PMID: 10.1103/PhysRevLett.97.206806)
      Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985). (PMID: 10.1103/RevModPhys.57.783)
      Yang, Y.-Y. et al. Optimization of the field enhancement and spectral bandwidth of single and coupled bimetal core-shell nanoparticles for few-cycle laser applications. Plasmonics 7, 99–106 (2011). (PMID: 10.1007/s11468-011-9281-9)
      Kaniber, M. et al. Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method. Sci. Rep. 6, 23203 (2016). (PMID: 10.1038/srep23203)
      Ding, W., Bachelot, R., Kostcheev, S., Royer, P. & Espiau Lamaestre, R. Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles. J. Appl. Phys. 108, 124314 (2010). (PMID: 10.1063/1.3524504)
      Zhong, W., Wang, Y., He, R. & Zhou, X. Investigation of plasmonics resonance infrared bowtie metal antenna. Appl. Phys. B 105, 231–237 (2011). (PMID: 10.1007/s00340-011-4662-5)
      Brown, L. V., Sobhani, H., Lassiter, J. B., Nordlander, P. & Halas, N. J. Heterodimers: Plasmonic properties of mismatched nanoparticle pairs. ACS Nano 4, 819–832 (2010). (PMID: 10.1021/nn9017312)
      Zuloaga, J., Prodan, E. & Nordlander, P. Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett. 9, 887–891 (2009). (PMID: 10.1021/nl803811g)
      Canfield, B. K. et al. Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers. Nano Lett. 7, 1251–1255 (2007). (PMID: 10.1021/nl0701253)
      Palomb, D., Danckwerts, M. & Novotny, L. Nonlinear plasmonics with gold nanoparticle antennas. J. Opt. A: Pure Appl. Opt. 11, 114030 (2009). (PMID: 10.1088/1464-4258/11/11/114030)
      Hanke, T. et al. Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. Phys. Rev. Lett. 103, 257404 (2009). (PMID: 10.1103/PhysRevLett.103.257404)
      Jarrett, J. W., Zhao, T., Johnson, J. S. & Knappenberger, K. L. Jr. Investigating plasmonic structure-dependent light amplification and electronic dynamics using advances in nonlinear optical microscopy. J. Phys. Chem. C 119, 15779–15800 (2015). (PMID: 10.1021/acs.jpcc.5b02494)
      Zentgraf, T., Christ, A., Kuhl, J. & Giessen, H. Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals. Phys. Rev. Lett. 93, 243901 (2004). (PMID: 10.1103/PhysRevLett.93.243901)
      Dombi, P. et al. Observation of few-cycle, strong-field phenomena in surface plasmon fields. Opt. Express 18, 24206–24212 (2010). (PMID: 10.1364/OE.18.024206)
      Dombi, P. et al. Ultrafast strong-field photoemission from plasmonic nanoparticles. Nano Lett. 13, 674–678 (2013). (PMID: 10.1021/nl304365e)
      Rácz, P. et al. Measurement of nanoplasmonic field enhancement with ultrafast photoemission. Nano Lett. 17, 1181–1186 (2017). (PMID: 10.1021/acs.nanolett.6b04893)
      Pfullmann, N. et al. Nano-antenna-assisted harmonic generation. Appl. Phys. B 113, 75–79 (2013). (PMID: 10.1007/s00340-013-5424-3)
      Krüger, M., Schenk, M. & Hommelhoff, P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011). (PMID: 10.1038/nature10196)
      Herink, G., Solli, D. R., Gulde, M. & Ropers, C. Field-driven photoemission from nanostructures quenches the quiver motion. Nature 483, 190–193 (2012). (PMID: 10.1038/nature10878)
      Piglosiewicz, B. et al. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nat. Photonics 8, 37–42 (2014). (PMID: 10.1038/nphoton.2013.288)
      MacDonald, K. F., Sámson, Z. L., Stockman, M. I. & Zheludev, N. I. Ultrafast active plasmonics. Nat. Photonics 3, 55 (2009). (PMID: 10.1038/nphoton.2008.249)
      Keller, E. L., Brandt, N. C., Cassabaum, A. A. & Frontiera, R. R. Ultrafast surface-enhanced Raman spectroscopy. Analyst 140, 4922 (2015). (PMID: 10.1039/C5AN00869G)
      Fedeli, L., Sgattoni, A., Cantono, G. & Macchi, A. Relativistic surface plasmon enhanced harmonic generation from gratings. Appl. Phys. Lett. 110, 051103 (2017). (PMID: 10.1063/1.4975365)
      Pisani, F., Fedeli, L. & Macchi, A. Few-cycle surface plasmon polariton generation by rotating wavefront pulses. ACS Photonics 5, 1068–1073 (2018). (PMID: 10.1021/acsphotonics.7b01347)
      Dombi, P. et al. Strong-field nano-optics. Rev. Mod. Phys. 92, 025003 (2020). (PMID: 10.1103/RevModPhys.92.025003)
      Palik, E. D. Handbook of Optical Constants of Solids (Academic Press, Cambridge, 1985).
      Csendes, T., Pál, L., Sendin, J. O. H. & Banga, J. R. The GLOBAL optimization method revisited. Optim. Lett. 2, 445–454 (2008). (PMID: 10.1007/s11590-007-0072-3)
    • Grant Information:
      Bolyai Scholarship Magyar Tudományos Akadémia
    • الموضوع:
      Date Created: 20200802 Latest Revision: 20210731
    • الموضوع:
      20231215
    • الرقم المعرف:
      PMC7395087
    • الرقم المعرف:
      10.1038/s41598-020-69761-x
    • الرقم المعرف:
      32737359