Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

SIRT7 deficiency suppresses inflammation, induces EndoMT, and increases vascular permeability in primary pulmonary endothelial cells.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Acute lung injury (ALI), a common condition in critically ill patients, has limited treatments and high mortality. Aging is a risk factor for ALI. Sirtuins (SIRTs), central regulators of the aging process, decrease during normal aging and in aging-related diseases. We recently showed decreased SIRT7 expression in lung tissues and fibroblasts from patients with pulmonary fibrosis compared to controls. To gain insight into aging-related mechanisms in ALI, we investigated the effects of SIRT7 depletion on lipopolysaccharide (LPS)-induced inflammatory responses and endothelial barrier permeability in human primary pulmonary endothelial cells. Silencing SIRT7 in pulmonary artery or microvascular endothelial cells attenuated LPS-induced increases in ICAM1, VCAM1, IL8, and IL6 and induced endomesenchymal transition (EndoMT) with decreases in VE-Cadherin and PECAM1 and increases in collagen, alpha-smooth muscle actin, TGFβ receptor 1, and the transcription factor Snail. Loss of endothelial adhesion molecules was accompanied by increased F-actin stress fibers and increased endothelial barrier permeability. Together, these results show that an aging phenotype induced by SIRT7 deficiency promotes EndoMT with impaired inflammatory responses and dysfunction of the lung vascular barrier.
    • References:
      Ware, L. B. & Matthay, M. A. The acute respiratory distress syndrome. N. Engl. J. Med. 342, 1334–1349. https://doi.org/10.1056/NEJM200005043421806 (2000). (PMID: 10.1056/NEJM20000504342180610793167)
      Matthay, M. A., Ware, L. B. & Zimmerman, G. A. The acute respiratory distress syndrome. J. Clin. Investig. 122, 2731–2740. https://doi.org/10.1172/JCI60331 (2012). (PMID: 10.1172/JCI6033122850883)
      Villar, J. et al. The ALIEN study: incidence and outcome of acute respiratory distress syndrome in the era of lung protective ventilation. Intensive Care Med. 37, 1932–1941. https://doi.org/10.1007/s00134-011-2380-4 (2011). (PMID: 10.1007/s00134-011-2380-421997128)
      Gill, S. E., Yamashita, C. M. & Veldhuizen, R. A. Lung remodeling associated with recovery from acute lung injury. Cell Tissue Res. 367, 495–509. https://doi.org/10.1007/s00441-016-2521-8 (2017). (PMID: 10.1007/s00441-016-2521-827796509)
      Bellani, G. et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315, 788–800. https://doi.org/10.1001/jama.2016.0291 (2016). (PMID: 10.1001/jama.2016.029126903337)
      Rubenfeld, G. D. et al. Incidence and outcomes of acute lung injury. N. Engl. J. Med. 353, 1685–1693. https://doi.org/10.1056/NEJMoa050333 (2005). (PMID: 10.1056/NEJMoa05033316236739)
      Fan, E., Brodie, D. & Slutsky, A. S. Acute respiratory distress syndrome: advances in diagnosis and treatment. JAMA 319, 698–710. https://doi.org/10.1001/jama.2017.21907 (2018). (PMID: 10.1001/jama.2017.2190729466596)
      Budinger, G. R. S. et al. The intersection of aging biology and the pathobiology of lung diseases: a joint NHLBI/NIA workshop. J. Gerontol. A Biol. Sci. Med. Sci. 72, 1492–1500. https://doi.org/10.1093/gerona/glx090 (2017). (PMID: 10.1093/gerona/glx090284988945861849)
      Rojas, M. et al. Aging and lung disease. Clinical impact and cellular and molecular pathways. Ann. Am. Thorac. Soc. 12, S222–S227. https://doi.org/10.1513/AnnalsATS.201508-484PL (2015). (PMID: 10.1513/AnnalsATS.201508-484PL266532026137674)
      Thannickal, V. J. et al. Blue journal conference. Aging and susceptibility to lung disease. Am. J. Respir. Crit. Care Med. 191, 261–269. https://doi.org/10.1164/rccm.201410-1876PP (2015). (PMID: 10.1164/rccm.201410-1876PP255908124351581)
      Eachempati, S. R., Hydo, L. J., Shou, J. & Barie, P. S. Outcomes of acute respiratory distress syndrome (ARDS) in elderly patients. J. Trauma 63, 344–350. https://doi.org/10.1097/TA.0b013e3180eea5a1 (2007). (PMID: 10.1097/TA.0b013e3180eea5a117693834)
      Ely, E. W. et al. Recovery rate and prognosis in older persons who develop acute lung injury and the acute respiratory distress syndrome. Ann. Intern. Med. 136, 25–36 (2002). (PMID: 10.7326/0003-4819-136-1-200201010-00007)
      Johnson, E. R. & Matthay, M. A. Acute lung injury: epidemiology, pathogenesis, and treatment. J. Aerosol. Med. Pulm. Drug Deliv. 23, 243–252. https://doi.org/10.1089/jamp.2009.0775 (2010). (PMID: 10.1089/jamp.2009.0775200735543133560)
      Johnston, C. J., Rubenfeld, G. D. & Hudson, L. D. Effect of age on the development of ARDS in trauma patients. Chest 124, 653–659 (2003). (PMID: 10.1378/chest.124.2.653)
      Rubenfeld, G. D. & Herridge, M. S. Epidemiology and outcomes of acute lung injury. Chest 131, 554–562. https://doi.org/10.1378/chest.06-1976 (2007). (PMID: 10.1378/chest.06-197617296661)
      Angus, D. C. et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 29, 1303–1310 (2001). (PMID: 10.1097/00003246-200107000-00002)
      Brandenberger, C., Kling, K. M., Vital, M. & Christian, M. The role of pulmonary and systemic immunosenescence in acute lung injury. Aging Dis. 9, 553–565. https://doi.org/10.14336/AD.2017.0902 (2018). (PMID: 10.14336/AD.2017.0902300906466065297)
      Linge, H. M., Ochani, K., Lin, K., Lee, J. Y. & Miller, E. J. Age-dependent alterations in the inflammatory response to pulmonary challenge. Immunol. Res. 63, 209–215. https://doi.org/10.1007/s12026-015-8684-7 (2015). (PMID: 10.1007/s12026-015-8684-7263187474648978)
      Klingbeil, L. R. et al. Age-dependent changes in AMPK metabolic pathways in the lung in a mouse model of hemorrhagic shock. Am. J. Respir. Cell Mol. Biol. 56, 585–596. https://doi.org/10.1165/rcmb.2016-0118OC (2017). (PMID: 10.1165/rcmb.2016-0118OC280855105449487)
      Starr, M. E. et al. Age-dependent vulnerability to endotoxemia is associated with reduction of anticoagulant factors activated protein C and thrombomodulin. Blood 115, 4886–4893. https://doi.org/10.1182/blood-2009-10-246678 (2010). (PMID: 10.1182/blood-2009-10-246678203483932890181)
      Starr, M. E., Ueda, J., Yamamoto, S., Evers, B. M. & Saito, H. The effects of aging on pulmonary oxidative damage, protein nitration, and extracellular superoxide dismutase down-regulation during systemic inflammation. Free Radic. Biol. Med. 50, 371–380. https://doi.org/10.1016/j.freeradbiomed.2010.11.013 (2011). (PMID: 10.1016/j.freeradbiomed.2010.11.01321092756)
      Palumbo, S. et al. Dysregulated Nox4 ubiquitination contributes to redox imbalance and age-related severity of acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 312, L297–L308. https://doi.org/10.1152/ajplung.00305.2016 (2017). (PMID: 10.1152/ajplung.00305.2016280624825374302)
      Bodas, M., Min, T. & Vij, N. Early-age-related changes in proteostasis augment immunopathogenesis of sepsis and acute lung injury. PLoS ONE 5, e15480. https://doi.org/10.1371/journal.pone.0015480 (2010). (PMID: 10.1371/journal.pone.0015480210855812981560)
      Bustos, M. L. et al. Aging mesenchymal stem cells fail to protect because of impaired migration and antiinflammatory response. Am. J. Respir. Crit. Care Med. 189, 787–798. https://doi.org/10.1164/rccm.201306-1043OC (2014). (PMID: 10.1164/rccm.201306-1043OC245594824061541)
      Guarente, L. & Franklin, H. Epstein lecture: sirtuins, aging, and medicine. N. Engl. J. Med. 364, 2235–2244. https://doi.org/10.1056/NEJMra1100831 (2011). (PMID: 10.1056/NEJMra110083121651395)
      Choi, J. E. & Mostoslavsky, R. Sirtuins, metabolism, and DNA repair. Curr. Opin. Genet. Dev. 26, 24–32. https://doi.org/10.1016/j.gde.2014.05.005 (2014). (PMID: 10.1016/j.gde.2014.05.00525005742)
      Ng, F. & Tang, B. L. Sirtuins’ modulation of autophagy. J. Cell Physiol. 228, 2262–2270. https://doi.org/10.1002/jcp.24399 (2013). (PMID: 10.1002/jcp.2439923696314)
      Chang, H. C. & Guarente, L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153, 1448–1460. https://doi.org/10.1016/j.cell.2013.05.027 (2013). (PMID: 10.1016/j.cell.2013.05.027237911763748806)
      Grabowska, W., Sikora, E. & Bielak-Zmijewska, A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology 18, 447–476. https://doi.org/10.1007/s10522-017-9685-9 (2017). (PMID: 10.1007/s10522-017-9685-9282585195514220)
      Hall, J. A., Dominy, J. E., Lee, Y. & Puigserver, P. The sirtuin family’s role in aging and age-associated pathologies. J. Clin. Investig. 123, 973–979. https://doi.org/10.1172/JCI64094 (2013). (PMID: 10.1172/JCI6409423454760)
      Houtkooper, R. H., Pirinen, E. & Auwerx, J. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol. 13, 225–238. https://doi.org/10.1038/nrm3293 (2012). (PMID: 10.1038/nrm3293223957734872805)
      Imai, S. & Guarente, L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 24, 464–471. https://doi.org/10.1016/j.tcb.2014.04.002 (2014). (PMID: 10.1016/j.tcb.2014.04.002247863094112140)
      van de Ven, R. A. H., Santos, D. & Haigis, M. C. Mitochondrial sirtuins and molecular mechanisms of aging. Trends Mol. Med. 23, 320–331. https://doi.org/10.1016/j.molmed.2017.02.005 (2017). (PMID: 10.1016/j.molmed.2017.02.005282858065713479)
      Donato, A. J. et al. SIRT-1 and vascular endothelial dysfunction with ageing in mice and humans. J. Physiol. 589, 4545–4554. https://doi.org/10.1113/jphysiol.2011.211219 (2011). (PMID: 10.1113/jphysiol.2011.211219217467863208223)
      Wyman, A. E. & Atamas, S. P. Sirtuins and accelerated aging in scleroderma. Curr. Rheumatol. Rep. 20, 16. https://doi.org/10.1007/s11926-018-0724-6 (2018). (PMID: 10.1007/s11926-018-0724-6295509945942182)
      Wyman, A. E. et al. Sirtuin 7 is decreased in pulmonary fibrosis and regulates the fibrotic phenotype of lung fibroblasts. Am. J. Physiol. Lung Cell Mol. Physiol. 312, L945–L958. https://doi.org/10.1152/ajplung.00473.2016 (2017). (PMID: 10.1152/ajplung.00473.2016283858125495944)
      Akamata, K. et al. SIRT3 is attenuated in systemic sclerosis skin and lungs, and its pharmacologic activation mitigates organ fibrosis. Oncotarget 7, 69321–69336. https://doi.org/10.18632/oncotarget.12504 (2016). (PMID: 10.18632/oncotarget.12504277325685342480)
      Bindu, S. et al. SIRT3 blocks myofibroblast differentiation and pulmonary fibrosis by preventing mitochondrial DNA damage. Am. J. Physiol. Lung Cell Mol. Physiol. 312, L68–L78. https://doi.org/10.1152/ajplung.00188.2016 (2017). (PMID: 10.1152/ajplung.00188.201627815257)
      Sosulski, M. L., Gongora, R., Feghali-Bostwick, C., Lasky, J. A. & Sanchez, C. G. Sirtuin 3 deregulation promotes pulmonary fibrosis. J. Gerontol. A Biol. Sci. Med. Sci. 72, 595–602. https://doi.org/10.1093/gerona/glw151 (2017). (PMID: 10.1093/gerona/glw15127522058)
      Wei, J. et al. The histone deacetylase sirtuin 1 is reduced in systemic sclerosis and abrogates fibrotic responses by targeting transforming growth factor beta signaling. Arthritis Rheumatol. 67, 1323–1334. https://doi.org/10.1002/art.39061 (2015). (PMID: 10.1002/art.39061257075734518870)
      Zhu, X. et al. Sirt1 ameliorates systemic sclerosis by targeting the mTOR pathway. J. Dermatol. Sci. 87, 149–158. https://doi.org/10.1016/j.jdermsci.2017.04.013 (2017). (PMID: 10.1016/j.jdermsci.2017.04.01328532580)
      Fu, C. et al. Activation of SIRT1 ameliorates LPS-induced lung injury in mice via decreasing endothelial tight junction permeability. Acta Pharmacol. Sin. https://doi.org/10.1038/s41401-018-0045-3 (2018). (PMID: 10.1038/s41401-018-0045-3303335556786433)
      Jiang, L. et al. Resveratrol ameliorates LPS-induced acute lung injury via NLRP3 inflammasome modulation. Biomed. Pharmacother. 84, 130–138. https://doi.org/10.1016/j.biopha.2016.09.020 (2016). (PMID: 10.1016/j.biopha.2016.09.02027643555)
      Kurundkar, D. et al. SIRT3 diminishes inflammation and mitigates endotoxin-induced acute lung injury. JCI Insight https://doi.org/10.1172/jci.insight.120722 (2019). (PMID: 10.1172/jci.insight.120722306267416485358)
      Li, T. et al. Resveratrol reduces acute lung injury in a LPS induced sepsis mouse model via activation of Sirt1. Mol. Med. Rep. 7, 1889–1895. https://doi.org/10.3892/mmr.2013.1444 (2013). (PMID: 10.3892/mmr.2013.144423625030)
      Tian, Y. G. & Zhang, J. Protective effect of SIRT3 on acute lung injury by increasing manganese superoxide dismutase-mediated antioxidation. Mol. Med. Rep. 17, 5557–5565. https://doi.org/10.3892/mmr.2018.8469 (2018). (PMID: 10.3892/mmr.2018.846929363727)
      Zhang, W. et al. Sirt1 protects endothelial cells against LPS-induced barrier dysfunction. Oxid. Med. Cell Longev. 2017, 4082102. https://doi.org/10.1155/2017/4082102 (2017). (PMID: 10.1155/2017/4082102292094485676476)
      Donato, A. J., Morgan, R. G., Walker, A. E. & Lesniewski, L. A. Cellular and molecular biology of aging endothelial cells. J. Mol. Cell Cardiol. 89, 122–135. https://doi.org/10.1016/j.yjmcc.2015.01.021 (2015). (PMID: 10.1016/j.yjmcc.2015.01.021256559364522407)
      Pardali, E., Sanchez-Duffhues, G., Gomez-Puerto, M. C. & Ten Dijke, P. TGF-beta-induced endothelial-mesenchymal transition in fibrotic diseases. Int. J. Mol. Sci. https://doi.org/10.3390/ijms18102157 (2017). (PMID: 10.3390/ijms18102157290397865666838)
      Piera-Velazquez, S., Mendoza, F. A. & Jimenez, S. A. Endothelial to mesenchymal transition (EndoMT) in the pathogenesis of human fibrotic diseases. J. Clin. Med. 5, 10. https://doi.org/10.3390/jcm5040045 (2016). (PMID: 10.3390/jcm5040045)
      Birukova, A. A. et al. Involvement of microtubules and Rho pathway in TGF-beta1-induced lung vascular barrier dysfunction. J. Cell Physiol. 204, 934–947. https://doi.org/10.1002/jcp.20359 (2005). (PMID: 10.1002/jcp.2035915828024)
      Clements, R. T., Minnear, F. L., Singer, H. A., Keller, R. S. & Vincent, P. A. RhoA and Rho-kinase dependent and independent signals mediate TGF-beta-induced pulmonary endothelial cytoskeletal reorganization and permeability. Am. J. Physiol. Lung Cell Mol. Physiol. 288, L294-306. https://doi.org/10.1152/ajplung.00213.2004 (2005). (PMID: 10.1152/ajplung.00213.200415475381)
      Tharakan, B. et al. beta-Catenin dynamics in the regulation of microvascular endothelial cell hyperpermeability. Shock 37, 306–311. https://doi.org/10.1097/SHK.0b013e318240b564 (2012). (PMID: 10.1097/SHK.0b013e318240b56422089197)
      Chen, L. et al. Honokiol protects pulmonary microvascular endothelial barrier against lipopolysaccharide-induced ARDS partially via the Sirt3/AMPK signaling axis. Life Sci. 210, 86–95. https://doi.org/10.1016/j.lfs.2018.08.064 (2018). (PMID: 10.1016/j.lfs.2018.08.06430171880)
      Karki, P. et al. Staphylococcus aureus-induced endothelial permeability and inflammation are mediated by microtubule destabilization. J. Biol. Chem. 294, 3369–3384. https://doi.org/10.1074/jbc.RA118.004030 (2019). (PMID: 10.1074/jbc.RA118.004030306221436416444)
      He, W., Zhang, J., Gan, T. Y., Xu, G. J. & Tang, B. P. Advanced glycation end products induce endothelial-to-mesenchymal transition via downregulating Sirt 1 and upregulating TGF-beta in human endothelial cells. Biomed. Res. Int. 2015, 684242. https://doi.org/10.1155/2015/684242 (2015). (PMID: 10.1155/2015/684242257100214330956)
      Lin, J. R. et al. Suppression of endothelial-to-mesenchymal transition by SIRT (Sirtuin) 3 alleviated the development of hypertensive renal injury. Hypertension 72, 350–360. https://doi.org/10.1161/HYPERTENSIONAHA.118.10482 (2018). (PMID: 10.1161/HYPERTENSIONAHA.118.1048229915018)
      Vazquez, B. N. et al. SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair. EMBO J. 35, 1488–1503. https://doi.org/10.15252/embj.201593499 (2016). (PMID: 10.15252/embj.201593499272259324884211)
      Wang, J., Niu, N., Xu, S. & Jin, Z. G. A simple protocol for isolating mouse lung endothelial cells. Sci. Rep. 9, 1458. https://doi.org/10.1038/s41598-018-37130-4 (2019). (PMID: 10.1038/s41598-018-37130-4307283726365507)
      Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). (PMID: 10.1038/nmeth.2089)
      Verin, A. D. et al. Microtubule disassembly increases endothelial cell barrier dysfunction: role of MLC phosphorylation. Am. J. Physiol. Lung Cell Mol. Physiol. 281, L565-574. https://doi.org/10.1152/ajplung.2001.281.3.L565 (2001). (PMID: 10.1152/ajplung.2001.281.3.L56511504682)
      Dubrovskyi, O., Birukova, A. A. & Birukov, K. G. Measurement of local permeability at subcellular level in cell models of agonist- and ventilator-induced lung injury. Lab. Investig. 93, 254–263. https://doi.org/10.1038/labinvest.2012.159 (2013). (PMID: 10.1038/labinvest.2012.15923212101)
      Tian, Y., Gawlak, G., O’Donnell, J. J. 3rd., Birukova, A. A. & Birukov, K. G. Activation of vascular endothelial growth factor (VEGF) receptor 2 mediates endothelial permeability caused by cyclic stretch. J. Biol. Chem. 291, 10032–10045. https://doi.org/10.1074/jbc.M115.690487 (2016). (PMID: 10.1074/jbc.M115.690487268843404858957)
    • Grant Information:
      R01GM122940 United States GM NIGMS NIH HHS; R01 HL107920 United States HL NHLBI NIH HHS; R01 HL076259 United States HL NHLBI NIH HHS; R01HL087823 United States HL NHLBI NIH HHS; R01 GM122940 United States GM NIGMS NIH HHS; R01HL126897 United States HL NHLBI NIH HHS; R01 HL146829 United States HL NHLBI NIH HHS; R01 HL087823 United States HL NHLBI NIH HHS; I01BX002499 United States VA VA; R01GM114171 United States GM NIGMS NIH HHS; R01 HL130431 United States HL NHLBI NIH HHS; I01CX000101 United States VA VA; R01HL107920 United States HL NHLBI NIH HHS
    • الرقم المعرف:
      0 (Inflammation Mediators)
      0 (Lipopolysaccharides)
      0 (NF-kappa B)
      0 (RNA, Messenger)
      0 (SIRT7 protein, human)
      0 (Sirt7 protein, mouse)
      0 (Transforming Growth Factor beta)
      11056-06-7 (Bleomycin)
      EC 3.5.1.- (Sirtuins)
    • الموضوع:
      Date Created: 20200729 Date Completed: 20201209 Latest Revision: 20210727
    • الموضوع:
      20240628
    • الرقم المعرف:
      PMC7385158
    • الرقم المعرف:
      10.1038/s41598-020-69236-z
    • الرقم المعرف:
      32719338