Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Endothelial cells and angiogenesis in the horse in health and disease-A review.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Wiley-Blackwell Country of Publication: Germany NLM ID: 7704218 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1439-0264 (Electronic) Linking ISSN: 03402096 NLM ISO Abbreviation: Anat Histol Embryol Subsets: MEDLINE
    • بيانات النشر:
      Publication: Berlin : Wiley-Blackwell
      Original Publication: Berlin, Parey.
    • الموضوع:
    • نبذة مختصرة :
      The cardiovascular system is the first functional organ in the embryo, and its blood vessels form a widespread conductive network within the organism. Blood vessels develop de novo, by the differentiation of endothelial progenitor cells (vasculogenesis) or by angiogenesis, which is the formation of new blood vessels from existing ones. This review presents an overview of the current knowledge on physiological and pathological angiogenesis in the horse including studies on equine endothelial cells. Principal study fields in equine angiogenesis research were identified: equine endothelial progenitor cells; equine endothelial cells and angiogenesis (heterogeneity, markers and assessment); endothelial regulatory molecules in equine angiogenesis; angiogenesis research in equine reproduction (ovary, uterus, placenta and conceptus, testis); angiogenesis research in pathological conditions (tumours, ocular pathologies, equine wound healing, musculoskeletal system and laminitis). The review also includes a table that summarizes in vitro studies on equine endothelial cells, either describing the isolation procedure or using previously isolated endothelial cells. A particular challenge of the review was that results published are fragmentary and sometimes even contradictory, raising more questions than they answer. In conclusion, angiogenesis is a major factor in several diseases frequently occurring in horses, but relatively few studies focus on angiogenesis in the horse. The challenge for the future is therefore to continue exploring new therapeutic angiogenesis strategies for horses to fill in the missing pieces of the puzzle.
      (© 2019 The Authors. Anatomia, Histologia, Embryologia published by Wiley-VCH GmbH.)
    • References:
      Abdelnaby, E. A., & El-Maaty, A. M. A. (2017). Dynamics of follicular blood flow, antrum growth, and angiogenic mediators in mares from deviation to ovulation. Journal of Equine Veterinary Science, 55, 51-59. https://doi.org/10.1016/j.jevs.2017.04.003.
      Adair, T. H., & Montani, J. P. (2010). Chapter 1, Overview of Angiogenesis. In Angiogenesis. San Rafael, CA: Morgan & Claypool Life Sciences. https://www.ncbi.nlm.nih.gov/books/NBK53238/.
      Aguilar, J., Fraser, H. M., Wilson, H., Clutton, E., Shaw, D. J., & Watson, E. D. (2006). Temporal relationship between proliferating and apoptotic hormone-producing and endothelial cells in the equine corpus luteum. Reproduction, 132(1), 111-118. https://doi.org/10.1530/rep.1.01051.
      Aird, W. C. (2007a). Phenotypic heterogeneity of the endothelium I. Structure, function, and mechanisms. Circulation Research, 100(2), 158-173. https://doi.org/10.1161/01.RES.0000255691.76142.4a.
      Aird, W. C. (2007b). Phenotypic heterogeneity of the endothelium II. Representative Vascular Beds. Circulation Research, 100(2), 174-190. https://doi.org/10.1161/01.RES.0000255690.03436.ae.
      Aird, W. C. (2012). Endothelial cell heterogeneity. Cold Spring Harbor Perspectives in Medicine, 2(1), a006429. https://doi.org/10.1101/cshperspect.a006429.
      Alias, S., Redwan, B., Panzenböck, A., Winter, M. P., Schubert, U., Voswinckel, R., … Lang, I. M. (2014). Defective angiogenesis delays thrombus resolution a potential pathogenetic mechanism underlying chronic thromboembolic pulmonary hypertension. Arteriosclerosis Thrombosis and Vascular Biology, 34(4), 810-819. https://doi.org/10.1161/Atvbaha.113.302991.
      Allbaugh, R. A. (2017). Equine recurrent uveitis: A review of clinical assessment and management. Equine Veterinary Education, 29(5), 279-288. https://doi.org/10.1111/eve.12548.
      Allen, D. Jr, Clark, E. S., Moore, J. N., & Prasse, K. W. (1990). Evaluation of equine digital Starling forces and hemodynamics during early laminitis. American Journal of Veterinary Research, 51(12), 1930-1934.
      Allen, W. R., Gower, S., & Wilsher, S. (2007). Immunohistochemical localization of vascular endothelial growth factor (VEGF) and its two receptors (Flt-I and KDR) in the endometrium and placenta of the mare during the oestrous cycle and pregnancy. Reproduction in Domestic Animals, 42(5), 516-526. https://doi.org/10.1111/j.1439-0531.2006.00815.x.
      Alroy, J., Goyal, V., & Skutelsky, E. (1987). Lectin histochemistry of mammalian endothelium. Histochemistry, 86(6), 603-607. https://doi.org/10.1007/bf00489554.
      Al-zi'abi, M. O., Fraser, H. M., & Watson, E. D. (2002). Cell death during natural and induced luteal regression in mares. Reproduction, 123(1), 67-77. https://doi.org/10.1530/rep.0.1230067.
      Al-zi'abil, M. O., Watson, E. D., & Fraser, H. A. (2003). Angiogenesis and vascular endothelial growth factor expression in the equine corpus luteum. Reproduction, 125(2), 259-270. https://doi.org/10.1530/rep.0.1250259.
      Anderson, S. L., & Singh, B. (2018). Equine neutrophils and their role in ischemia reperfusion injury and lung inflammation. Cell and Tissue Research, 371(3), 639-648. https://doi.org/10.1007/s00441-017-2770-1.
      Angelone, M., Conti, V., Biacca, C., Battaglia, B., Pecorari, L., Piana, F., … Grolli, S. (2017). the contribution of adipose tissue-derived mesenchymal stem cells and platelet-rich plasma to the treatment of chronic equine laminitis: A proof of concept. International Journal of Molecular Sciences, 18(10), 17. https://doi.org/10.3390/ijms18102122.
      Arnhold, S., Absenger, Y., Klein, H., Addicks, K., & Schraermeyer, U. (2007). Transplantation of bone marrow-derived mesenchymal stem cells rescue photoreceptor cells in the dystrophic retina of the rhodopsin knockout mouse. Graefes Archive for Clinical and Experimental Ophthalmology, 245(3), 414-422. https://doi.org/10.1007/s00417-006-0382-7.
      Arnhold, S., Elashry, M. I., Klymiuk, M. C., & Wenisch, S. (2019). Biological macromolecules and mesenchymal stem cells: Basic research for regenerative therapies in veterinary medicine. International Journal of Biological Macromolecules, 123, 889-899. https://doi.org/10.1016/j.ijbiomac.2018.11.158.
      Bahramsoltani, M., Harms, T., Drewes, B., & Plendl, J. (2013). Searching for markers to identify angiogenic endothelial cells: A proteomic approach. Clinical Hemorheology and Microcirculation, 55(2), 255-269. https://doi.org/10.3233/ch-2012-1631.
      Bahramsoltani, M., Plendl, J., Janczyk, P., Custodis, P., & Kaessmeyer, S. (2009). Quantitation of angiogenesis and antiangiogenesis in vivo, ex vivo and in vitro - an overview. Altex, 26(2), 95-107. https://doi.org/10.14573/altex.2009.2.95.
      Bailey, S. R., & Cunningham, F. M. (2001a). Adherence of eosinophils from allergic and normal ponies to cultured equine endothelial cells. Inflammation Research, 50(1), 32-38. https://doi.org/10.1007/s000110050721.
      Bailey, S. R., & Cunningham, F. M. (2001b). Inflammatory mediators induce endothelium-dependent adherence of equine eosinophils to cultured endothelial cells. Journal of Veterinary Pharmacology and Therapeutics, 24(3), 209-214. https://doi.org/10.1046/j.1365-2885.2001.00329.x.
      Bailey, S. R., & Elliott, J. (1998). Evidence for different 5-HT1B/1D receptors mediating vasoconstriction of equine digital arteries and veins. European Journal of Pharmacology, 355(2-3), 175-187. https://doi.org/10.1016/s0014-2999(98)00520-2.
      Banno, K., & Yoder, M. C. (2018). Tissue regeneration using endothelial colony-forming cells: Promising cells for vascular repair. Pediatric Research, 83(1), 283-290. https://doi.org/10.1038/pr.2017.231.
      Bara, J. J., McCarthy, H. E., Humphrey, E., Johnson, W. E. B., & Roberts, S. (2014). Bone marrow-derived mesenchymal stem cells become antiangiogenic when chondrogenically or osteogenically differentiated: Implications for bone and cartilage tissue engineering. Tissue Engineering Part A, 20(1-2), 147-159. https://doi.org/10.1089/ten.tea.2013.0196.
      Barboni, B., Russo, V., Berardinelli, P., Mauro, A., Valbonetti, L., Sanyal, H., … Mattioli, M. (2018). Placental stem cells from domestic animals: Translational potential and clinical relevance. Cell Transplantation, 27(1), 93-116. https://doi.org/10.1177/0963689717724797.
      Barry, S. (2010). Non-steroidal anti-inflammatory drugs inhibit bone healing: A review. Veterinary and Comparative Orthopaedics and Traumatology, 23(6), 385-392. https://doi.org/10.3415/vcot-10-01-0017.
      Barua, S., Macedo, A., Kolb, D. S., Wynne-Edwards, K. E., & Klein, C. (2018). Milk-fat globule epidermal growth factor 8 (MFGE8) is expressed at the embryo- and fetal-maternal interface in equine pregnancy. Reproduction Fertility and Development, 30(4), 585-590. https://doi.org/10.1071/rd17094.
      Bastos, H., Martinez, M. N., Camozzato, G. C., Estradé, M. J., Barros, E., Vital, C. E., … Mattos, R. C. (2019). Proteomic profile of histotroph during early embryo development in mares. Theriogenology, 125, 224-235. https://doi.org/10.1016/j.theriogenology.2018.11.002.
      Baxter, G. M., Laskey, R. E., Tackett, R. L., Moore, J. N., & Allen, D. (1989). In vitro reactivity of digital arteries and veins to vasoconstrictive mediators in healthy horses and in horses with early laminitis. American Journal of Veterinary Research, 50(4), 508-517.
      Beerlage, C., Varanat, M., Linder, K., Maggi, R. G., Cooley, J., Kempf, V. A. J., & Breitschwerdt, E. B. (2012). Bartonella vinsonii subsp berkhoffii and Bartonella henselae as potential causes of proliferative vascular diseases in animals. Medical Microbiology and Immunology, 201(3), 319-326. https://doi.org/10.1007/s00430-012-0234-5.
      Bek, E. L., & McMillen, M. A. (2000). Endothelins are angiogenic. Journal of Cardiovascular Pharmacology, 36(5 Suppl 1), S135-139. https://doi.org/10.1097/00005344-200036051-00043.
      Belknap, J. K., Giguere, S., Pettigrew, A., Cochran, A. M., Van Eps, A. W., & Pollitt, C. C. (2007). Lamellar pro-inflammatory cytokine expression patterns in laminitis at the developmental stage and at the onset of lameness: Innate vs. adaptive immune response. Equine Veterinary Journal, 39(1), 42-47. https://doi.org/10.2746/042516407x155406.
      Belknap, J. K., Moore, J. N., & Crouser, E. C. (2009). Sepsis-From human organ failure to laminar failure. Veterinary Immunology and Immunopathology, 129(3-4), 155-157. https://doi.org/10.1016/j.vetimm.2008.11.013.
      Benazzi, C., Torre, F., Sarli, G., & Marcheselli, C. (2000). Patterns of histological and immunohistochemical alterations in the constriction of the constriction of fetlock annular ligament (FAL) of the horse. Ippologia, 11(1), 23-28.
      Benbarek, H., Grülke, S., Deby-Dupont, G., Deby, C., Mathy-Hartert, M., Caudron, I., … Serteyn, D. (2000). Cytotoxicity of stimulated equine neutrophils on equine endothelial cells in culture. Equine Veterinary Journal, 32(4), 327-333. https://doi.org/10.2746/042516400777032273.
      Bischofberger, A. S., Dart, C. M., Horadagoda, N., Perkins, N. R., Jeffcott, L. B., Little, C. B., & Dart, A. J. (2016). Effect of Manuka honey gel on the transforming growth factor beta 1 and beta 3 concentrations, bacterial counts and histomorphology of contaminated full-thickness skin wounds in equine distal limbs. Australian Veterinary Journal, 94(1-2), 27-34. https://doi.org/10.1111/avj.12405.
      Bischofberger, A. S., Tsang, A. S., Horadagoda, N., Dart, C. M., Perkins, N. R., Jeffcott, L. B., … Dart, A. J. (2015). Effect of activated protein C in second intention healing of equine distal limb wounds: A preliminary study. Australian Veterinary Journal, 93(10), 361-366. https://doi.org/10.1111/avj.12363.
      Black, S. J., Lunn, D. P., Yin, C. L., Hwang, M., Lenz, S. D., & Belknap, J. K. (2006). Leukocyte emigration in the early stages of laminitis. Veterinary Immunology and Immunopathology, 109(1-2), 161-166. https://doi.org/10.1016/j.vetimm.2005.08.017.
      Bochsler, P. N., Slauson, D. O., Chandler, S. K., & Suyemoto, M. M. (1989). Isolation and characterization of equine microvascular endothelial cells in vitro. American Journal of Veterinary Research, 50(10), 1800-1805.
      Bodaan, C. J., Wise, L. M., Wakelin, K. A., Stuart, G. S., Real, N. C., Mercer, A. A., … Theoret, C. (2016). Short-term treatment of equine wounds with orf virus IL-10 and VEGF-E dampens inflammation and promotes repair processes without accelerating closure. Wound Repair and Regeneration, 24(6), 966-980. https://doi.org/10.1111/wrr.12488.
      Bosch, G., Moleman, M., Barneveld, A., van Weeren, P. R., & van Schie, H. T. M. (2011). The effect of platelet-rich plasma on the neovascularization of surgically created equine superficial digital flexor tendon lesions. Scandinavian Journal of Medicine & Science in Sports, 21(4), 554-561. https://doi.org/10.1111/j.1600-0838.2009.01070.x.
      Brooks, A. C., Menzies-Gow, N., Bailey, S. R., Cunningham, F. M., & Elliott, J. (2010). Endotoxin-induced HIF-1alpha stabilisation in equine endothelial cells: Synergistic action with hypoxia. Inflammation Research, 59(9), 689-698. https://doi.org/10.1007/s00011-010-0180-x.
      Brooks, A. C., Menzies-Gow, N. J., Wheeler-Jones, C., Bailey, S. R., Cunningham, F. M., & Elliott, J. (2009). Endotoxin-induced activation of equine digital vein endothelial cells: Role of p38 MAPK. Veterinary Immunology and Immunopathology, 129(3-4), 174-180. https://doi.org/10.1016/j.vetimm.2008.11.008.
      Bussche, L., & Van de Walle, G. R. (2014). Peripheral blood-derived mesenchymal stromal cells promote angiogenesis via paracrine stimulation of vascular endothelial growth factor secretion in the equine model. Stem Cells Translational Medicine, 3(12), 1514-1525. https://doi.org/10.5966/sctm.2014-0138.
      Carmona, J. U., Lopez, C., & Giraldo, C. E. (2011). Use of autologous platelet concentrates as regenerative therapy for chronic diseases of the equine musculoskeletal system. Archivos De Medicina Veterinaria, 43(1), 1-10. https://doi.org/10.4067/s0301-732x2011000100002.
      Celeste, C. J., Deschesne, K., Riley, C. B., & Theoret, C. L. (2013). Skin temperature during cutaneous wound healing in an equine model of cutaneous fibroproliferative disorder: Kinetics and anatomic-site differences. Veterinary Surgery, 42(2), 147-153. https://doi.org/10.1111/j.1532-950X.2012.00966.x.
      Cerimele, F., Brown, L. F., Bravo, F., Ihler, G. M., Kouadio, P., & Arbiser, J. L. (2003). Infectious angiogenesis: Bartonella bacilliformis infection results in endothelial production of angiopoetin-2 and epidermal production of vascular endothelial growth factor. The American Journal of Pathology, 163(4), 1321-1327. https://doi.org/10.1016/S0002-9440(10)63491-8.
      Chiam, R., Smid, L., Kydd, J. H., Smith, K. C., Platt, A., & Davis-Poynter, N. J. (2006). Use of polarised equine endothelial cell cultures and an in vitro thrombosis model for potential characterisation of EHV-1 strain variation. Veterinary Microbiology, 113(3-4), 243-249. https://doi.org/10.1016/j.vetmic.2005.11.005.
      Chong, M. S., Ng, W. K., & Chan, J. K. (2016). Concise review: Endothelial progenitor cells in regenerative medicine: Applications and challenges. Stem Cells Translational Medicine, 5(4), 530-538. https://doi.org/10.5966/sctm.2015-0227.
      Chopra, H., Hung, M. K., Kwong, D. L., Zhang, C. F., & Pow, E. H. N. (2018). Insights into endothelial progenitor cells: origin, classification, potentials, and prospects. Stem Cells International, 2018, 9847015. https://doi.org/10.1155/2018/9847015.
      Collins, R. G., Velji, R., Guevara, N. V., Hicks, M. J., Chan, L., & Beaudet, A. L. (2000). P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. Journal of Experimental Medicine, 191(1), 189-194. https://doi.org/10.1084/jem.191.1.189.
      Crisan, M. I., Damian, A., Gal, A., Miclaus, V., Cernea, C. L., & Denoix, J. M. (2013). Vascular abnormalities of the distal deep digital flexor tendon in 8 draught horses identified on histological examination. Research in Veterinary Science, 95(1), 23-26. https://doi.org/10.1016/j.rvsc.2013.03.006.
      da Costa, R. P. R., Costa, A. S., Korzekwa, A. J., Platek, R., Siemieniuch, M., Galvão, A., … Ferreira-Dias, G. (2008). Actions of a nitric oxide donor on prostaglandin production and angiogenic activity in the equine endometrium. Reproduction Fertility and Development, 20(6), 674-683. https://doi.org/10.1071/rd08015.
      da Costa, R. P. R., Ferreira-Dias, G., Mateus, L., Korzekwa, A., Andronowska, A., Platek, R., & Skarzynski, D. J. (2007). Endometrial nitric oxide production and nitric oxide synthases in the equine endometrium: Relationship with microvascular density during the estrous cycle. Domestic Animal Endocrinology, 32(4), 287-302. https://doi.org/10.1016/j.domaniend.2006.03.007.
      Davenport, A. P., Hyndman, K. A., Dhaun, N., Southan, C., Kohan, D. E., Pollock, J. S., … Maguire, J. J. (2016). Endothelin. Pharmacological Reviews, 68(2), 357-418. https://doi.org/10.1124/pr.115.011833.
      de Alencar-Araripe, M. G., Nunes-Pinheiro, D. C. S., Costa, B. O., Batista, L. S., Feitosa, M. S., de Almeida, G. K. G., … Girao, V. C. (2014). A clinical trial and oral wound treated by essential oil of lippia sidoides mouthrinse in horses. Acta Scientiae Veterinariae, 42, 8.
      de Rebiere de Pouyade, G. D. L., Salciccia, A., Ceusters, J., Deby-Dupont, G., Serteyn, D., & Mouithys-Mickalad, A. (2011). Production of free radicals and oxygen consumption by primary equine endothelial cells during anoxia-reoxygenation. The Open Biochemistry Journal, 5, 52-59. https://doi.org/10.2174/1874091X01105010052.
      De Spiegelaere, W., Casteleyn, C., Van den Broeck, W., Plendl, J., Bahramsoltani, M., Simoens, P., … Cornillie, P. (2012). Intussusceptive angiogenesis: A biologically relevant form of angiogenesis. Journal of Vascular Research, 49(5), 390-404. https://doi.org/10.1159/000338278.
      Denoix, J. M. (1994). Functional anatomy of tendons and ligaments in the distal limbs (manus and pes). Veterinary Clinics of North America: Equine Practice, 10(2), 273-322. https://doi.org/10.1016/s0749-0739(17)30358-9.
      Dias, D. P. M., & Neto, J. C. D. (2013). Jugular thrombophlebitis in horses: A review of fibrinolysis, thrombus formation, and clinical management. Canadian Veterinary Journal-Revue Veterinaire Canadienne, 54(1), 65-71.
      Dietze, K., Slosarek, I., Fuhrmann-Selter, T., Hopperdietzel, C., Plendl, J., & Kaessmeyer, S. (2014). Isolation of equine endothelial cells and life cell angiogenesis assay. Clinical Hemorheology and Microcirculation, 58(1), 127-146. https://doi.org/10.3233/ch-141877.
      Dini, P., Daels, P., Loux, S. C., Esteller-Vico, A., Carossino, M., Scoggin, K. E., & Ball, B. A. (2018). Kinetics of the chromosome 14 microRNA cluster ortholog and its potential role during placental development in the pregnant mare. Bmc Genomics, 19, 21. https://doi.org/10.1186/s12864-018-5341-2.
      DiPietro, L. A. (2016). Angiogenesis and wound repair: When enough is enough. Journal of Leukocyte Biology, 100(5), 979-984. https://doi.org/10.1189/jlb.4MR0316-102R.
      Dubuc, V., Lepault, E., & Theoret, C. L. (2006). Endothelial cell hypertrophy is associated with microvascular occlusion in horse wounds. Canadian Journal of Veterinary Research-Revue Canadienne De Recherche Veterinaire, 70(3), 206-210.
      Eades, S. C. (2010). Overview of current laminitis research. Veterinary Clinics of North America: Equine Practice, 26(1), 51-63. https://doi.org/10.1016/j.cveq.2010.01.001.
      Eades, S. C., Stokes, A. M., Johnson, P. J., LeBlanc, C. J., Ganjam, V. K., Buff, P. R., & Moore, R. M. (2007). Serial alterations in digital hemodynamics and endothelin-1 immunoreactivity, platelet-neutrophil aggregation, and concentrations of nitric oxide, insulin, and glucose in blood obtained from horses following carbohydrate overload. American Journal of Veterinary Research, 68(1), 87-94. https://doi.org/10.2460/ajvr.68.1.87.
      Eivers, S. S., McGivney, B. A., Gu, J., MacHugh, D. E., Katz, L. M., & Hill, E. W. (2012). PGC-1 alpha encoded by the PPARGC1A gene regulates oxidative energy metabolism in equine skeletal muscle during exercise. Animal Genetics, 43(2), 153-162. https://doi.org/10.1111/j.1365-2052.2011.02238.x.
      Ellenberger, C., Muller, K., Schoon, H. A., Wilsher, S., & Allen, W. R. (2009). Histological and immunohistochemical characterization of equine anovulatory haemorrhagic follicles (AHFs). Reproduction in Domestic Animals, 44(3), 395-405. https://doi.org/10.1111/j.1439-0531.2008.01085.x.
      Emanueli, C., Schratzberger, P., Kirchmair, R., & Madeddu, P. (2003). Paracrine control of vascularization and neurogenesis by neurotrophins. British Journal of Pharmacology, 140(4), 614-619. https://doi.org/10.1038/sj.bjp.0705458.
      Esteves, C. L., & Donadeu, F. X. (2018). Pericytes and their potential in regenerative medicine across species. Cytometry A, 93(1), 50-59. https://doi.org/10.1002/cyto.a.23243.
      Fagiani, E., & Christofori, G. (2013). Angiopoietins in angiogenesis. Cancer Letters, 328(1), 18-26. https://doi.org/10.1016/j.canlet.2012.08.018.
      Faleiros, R. R., Leise, B. B., Westerman, T., Yin, C., Nuovo, G. J., & Belknap, J. K. (2009). In vivo and in vitro evidence of the involvement of CXCL1, a keratinocyte-derived chemokine, in equine laminitis. Journal of Veterinary Internal Medicine, 23(5), 1086-1096. https://doi.org/10.1111/j.1939-1676.2009.0349.x.
      Ferreira-Dias, G., Bravo, P. P., Mateus, L., Redmer, D. A., & Medeiros, J. A. (2006). Microvascularization and angiogenic activity of equine corpora lutea throughout the estrous cycle. Domestic Animal Endocrinology, 30(4), 247-259. https://doi.org/10.1016/j.domaniend.2005.07.007.
      Ferreira-Dias, G., Costa, A. S., Mateus, L., Korzekwa, A. J., Galvão, A., Redmer, D. A., … Skarzynski, D. J. (2011). Nitric oxide stimulates progesterone and prostaglandin E-2 secretion as well as angiogenic activity in the equine corpus luteum. Domestic Animal Endocrinology, 40(1), 1-9. https://doi.org/10.1016/j.domaniend.2010.08.001.
      Ferreira-Dias, G., Costa, A. S., Mateus, L., Korzekwa, A., Redmer, D. A., & Skarzynski, D. J. (2006). Proliferative processes within the equine corpus luteum may depend on paracrine progesterone actions. Journal of Physiology and Pharmacology, 57, 139-151.
      Ferreira-Dias, G., & Mateus, L. (2003). The equine cyclic corpus luteum: Microvascularization, luteal cells characterization and function. Pferdeheilkunde, 19(6), 585-588. https://doi.org/10.21836/PEM20030602.
      Ferreira-Dias, G., Serrao, P. M., Durao, J. F. C., & Silva, J. R. (2001). Microvascular development and growth of uterine tissue during the estrous cycle in mares. American Journal of Veterinary Research, 62(4), 526-530. https://doi.org/10.2460/ajvr.2001.62.526.
      Ferreira-Dias, G., & Skarzynski, D. J. (2008). Some aspects of regulation of luteal function and luteolysis in equine corpora lutea. Pferdeheilkunde, 24(1), 10-14. https://doi.org/10.21836/pem20080102.
      Folkman, J., (1971). Tumor angiogenesis: Therapeutic implications. The New England Journal of Medicine, 285(21), 1182-1186. https://doi.org/10.1056/nejm197111182852108.
      Fraser, H. M. (2006). Regulation of the ovarian follicular vasculature. Reproductive Biology and Endocrinology, 4, 18. https://doi.org/10.1186/1477-7827-4-18.
      Galvao, A., Ferreira-Dias, G., & Skarzynski, D. J. (2013). Cytokines and angiogenesis in the corpus luteum. Mediators of Inflammation, 11, 1-11. https://doi.org/10.1155/2013/420186.
      Galvao, A., Henriques, S., Pestka, D., Lukasik, K., Skarzynski, D., Mateus, L. M., & Ferreira-Dias, G. (2012). Equine luteal function regulation may depend on the interaction between cytokines and vascular endothelial growth factor: An in vitro study. Biology of Reproduction, 86(6), 9. https://doi.org/10.1095/biolreprod.111.097147.
      Galvao, A., Tramontano, A., Rebordao, M. R., Amaral, A., Bravo, P. P., Szostek, A., … Ferreira-Dias, G. (2014). Opposing roles of leptin and ghrelin in the equine corpus luteum regulation: An in vitro study. Mediators of Inflammation, 13, https://doi.org/10.1155/2014/682193.
      Galvão, A., Valente, L., Skarzynski, D. J., Szóstek, A., Piotrowska-Tomala, K., Rebordão, M. R., … Ferreira-Dias, G. (2013). Effect of cytokines and ovarian steroids on equine endometrial function: An in vitro study. Reproduction Fertility and Development, 25(7), 985-997. https://doi.org/10.1071/rd12153.
      Gee, E., Milkiewicz, M., & Haas, T. L. (2010). p38 MAPK activity is stimulated by vascular endothelial growth factor receptor 2 activation and is essential for shear stress-induced angiogenesis. Journal of Cellular Physiology, 222(1), 120-126. https://doi.org/10.1002/jcp.21924.
      Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., … Betsholtz, C. (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. Journal of Cell Biology, 161(6), 1163-1177. https://doi.org/10.1083/jcb.200302047.
      Ginther, O. J., Gastal, E. L., Gastal, M. O., Checura, C. M., & Beg, M. A. (2004). Dose-response study of intrafollicular injection of insulin-like growth factor-I on follicular fluid factors and follicle dominance in mares. Biology of Reproduction, 70(4), 1063-1069. https://doi.org/10.1095/biolreprod.103.024844.
      Gregg, A. J., & Schenkel, A. R. (2008). Cloning and structural analysis of equine platelet endothelial cell adhesion molecule (PECAM, CD31) and vascular cell adhesion molecule-1 (VCAM-1, CD106). Veterinary Immunology and Immunopathology, 122(3-4), 295-308. https://doi.org/10.1016/j.vetimm.2007.11.008.
      Ha, T. Y., Kim, H. S., & Shin, T. (2004). Expression of constitutive endothelial, neuronal and inducible nitric oxide synthase in the testis and epididymis of horse. Journal of Veterinary Medical Science, 66(4), 351-356. https://doi.org/10.1292/jvms.66.351.
      Hadi, H. A., Carr, C. S., & Al Suwaidi, J. (2005). Endothelial dysfunction: Cardiovascular risk factors, therapy, and outcome. Vascular Health and Risk Management, 1(3), 183-198.
      Hananehl, W. M., Ismail, Z. B., Alshehabat, M. A., & Ali, J. (2015). Review of animal models used to study effects of bee products on wound healing: Findings and applications. Bulletin of the Veterinary Institute in Pulawy, 59(3), 425-431. https://doi.org/10.1515/bvip-2015-0062.
      Hauck, S. M., Lepper, M. F., Hertl, M., Sekundo, W., & Deeg, C. A. (2017). Proteome dynamics in biobanked horse peripheral blood derived lymphocytes (PBL) with induced autoimmune uveitis. Proteomics, 17(19), 5. https://doi.org/10.1002/pmic.201700013.
      Hedges, J. F., Demaula, C. D., Moore, B. D., McLaughlin, B. E., Simon, S. I., & MacLachlan, N. J. (2001). Characterization of equine E-selectin. Immunology, 103(4), 498-504. https://doi.org/10.1046/j.1365-2567.2001.01262.x.
      Heinzerling, L. M., Feige, K., Rieder, S., Akens, M. K., Dummer, R., Stranzinger, G., & Moelling, K. (2001). Tumor regression induced by intratumoral injection of DNA coding for human interleukin 12 into melanoma metastases in gray horses. Journal of Molecular Medicine (Berlin, Germany), 78(12), 692-702. https://doi.org/10.1007/s001090000165.
      Hendzel, M. J., Wei, Y. I., Mancini, M. A., Van Hooser, A., Ranalli, T., Brinkley, B. R., … Allis, C. D. (1997). Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma, 106(6), 348-360. https://doi.org/10.1007/s004120050256.
      Hofmaier, F., Hauck, S. M., Amann, B., Degroote, R. L., & Deeg, C. A. (2011). Changes in matrix metalloproteinase network in a spontaneous autoimmune uveitis model. Investigative Ophthalmology & Visual Science, 52(5), 2314-2320. https://doi.org/10.1167/iovs.10-6475.
      Hristov, M., Erl, W., & Weber, P. C. (2003). Endothelial progenitor cells: Mobilization, differentiation, and homing. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(7), 1185-1189. https://doi.org/10.1161/01.Atv.0000073832.49290.B5.
      Huang, H., Lavoie-Lamoureux, A., & Lavoie, J. P. (2009). Cholinergic stimulation attenuates the IL-4 induced expression of E-selectin and vascular endothelial growth factor by equine pulmonary artery endothelial cells. Veterinary Immunology and Immunopathology, 132(2-4), 116-121. https://doi.org/10.1016/j.vetimm.2009.05.003.
      Huang, H., Lavoie-Lamoureux, A., Moran, K., & Lavoie, J. P. (2007). IL-4 stimulates the expression of CXCL-8, E-selectin, VEGF, and inducible nitric oxide synthase mRNA by equine pulmonary artery endothelial cells. American Journal of Physiology-Lung Cellular and Molecular Physiology, 292(5), L1147-1154. https://doi.org/10.1152/ajplung.00294.2006.
      Huntington, P., Pollitt, C., & McGowan, C. (2008). Recent Research into Laminitis. Advances in Equine Nutrition, IV, 309-327.
      Ipina, Z., Lussier, J. G., & Theoret, C. L. (2009). Nucleotide structure and expression of equine pigment epithelium-derived factor during repair of experimentally induced wounds in horses. American Journal of Veterinary Research, 70(1), 112-117. https://doi.org/10.2460/ajvr.70.1.112.
      Johnson, G. C., Miller, M. A., Floss, J. L., & Turk, J. R. (1996). Histologic and immunohistochemical characterization of hemangiomas in the skin of seven young horses. Veterinary Pathology, 33(2), 142-149. https://doi.org/10.1177/030098589603300203.
      Johnstone, S., Barsova, J., Campos, I., & Frampton, A. R. (2016). Equine herpesvirus type 1 modulates inflammatory host immune response genes in equine endothelial cells. Veterinary Microbiology, 192, 52-59. https://doi.org/10.1016/j.vetmic.2016.06.012.
      Kassmeyer, S., Plendl, J., Custodis, P., & Bahramsoltani, M. (2009). New insights in vascular development: vasculogenesis and endothelial progenitor cells. Anatomia Histologia Embryologia, 38(1), 1-11. https://doi.org/10.1111/j.1439-0264.2008.00894.x.
      Katz, L. M., & Bailey, S. R. (2012). A review of recent advances and current hypotheses on the pathogenesis of acute laminitis. Equine Veterinary Journal, 44(6), 752-761. https://doi.org/10.1111/j.2042-3306.2012.00664.x.
      Katz, L. M., Marr, C. M., & Elliott, J. (2003). Characterisation of the response of equine digital arteries and veins to substance P. Journal of Veterinary Pharmacology and Therapeutics, 26(5), 361-368. https://doi.org/10.1046/j.1365-2885.2003.00491.x.
      Katz, L. M., Marr, C. M., & Elliott, J. (2011). Characterization of the responses of equine digital veins and arteries to calcitonin gene-related peptide. American Journal of Veterinary Research, 72(7), 975-981. https://doi.org/10.2460/ajvr.72.7.975.
      Khafaga, A. F., Abu-Ahmed, H. M., El-Khamary, A. N., Elmehasseb, I. M., & Shaheen, H. M. (2018). Enhancement of equid distal limb wounds healing by topical application of silver nanoparticles. Journal of Equine Veterinary Science, 61, 76-87. https://doi.org/10.1016/j.jevs.2017.11.013.
      Klagsbrun, M., & D'Amore, P. A. (1991). Regulators of angiogenesis. Annual Review of Physiology, 53, 217-239. https://doi.org/10.1146/annurev.ph.53.030191.001245.
      Klein, C. (2016). The role of relaxin in mare reproductive physiology: A comparative review with other species. Theriogenology, 86(1), 451-456. https://doi.org/10.1016/j.theriogenology.2016.04.061.
      Knottenbelt, D. C. (2019). The equine sarcoid: Why are there so many treatment options? The Veterinary clinics of North America: Equine Practice, 35(2), 243-262. https://doi.org/10.1016/j.cveq.2019.03.006.
      Koch, T. G., Berg, L. C., & Betts, D. H. (2009). Current and future regenerative medicine - Principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine. Canadian Veterinary Journal-Revue Veterinaire Canadienne, 50(2), 155-165.
      Kovac, M., Litvin, Y. A., Aliev, R. O., Zakirova, E. Y., Rutland, C. S., Kiyasov, A. P., & Rizvanov, A. A. (2017). Gene therapy using plasmid DNA encoding vascular endothelial growth factor 164 and fibroblast growth factor 2 genes for the treatment of horse tendinitis and desmitis: Case reports. Frontiers in Veterinary Science, 4, 168. https://doi.org/10.3389/fvets.2017.00168.
      Kovac, M., Litvin, Y. A., Aliev, R. O., Zakirova, E. Y., Rutland, C. S., Kiyasov, A. P., & Rizvanov, A. A. (2018). Gene therapy using plasmid DNA encoding VEGF164 and FGF2 genes: a novel treatment of naturally occurring tendinitis and desmitis in horses. Frontiers in Pharmacology, 9, 16. https://doi.org/10.3389/fphar.2018.00978.
      Lamar, C. H., Turek, J. J., Bottoms, G. D., & Fessler, J. F. (1986). Equine endothelial cells in vitro. American Journal of Veterinary Research, 47(4), 956-958.
      Laval, K., Favoreel, H. W., Poelaert, K. C. K., Van Cleemput, J., & Nauwynck, H. J. (2015). Equine herpesvirus type 1 enhances viral replication in CD172a(+) monocytic cells upon adhesion to endothelial cells. Journal of Virology, 89(21), 10912-10923. https://doi.org/10.1128/Jvi.01589-15.
      Li, X. M., Hu, Z., Jorgenson, M. L., & Slayton, W. B. (2009). High levels of acetylated low-density lipoprotein uptake and low tyrosine kinase with immunoglobulin and epidermal growth factor homology domains-2 (Tie2) promoter activity distinguish sinusoids from other vessel types in murine bone marrow. Circulation, 120(19), 1910-1918. https://doi.org/10.1161/circulationaha.109.871574.
      Lienau, J., Schell, H., Duda, G. N., Seebeck, P., Muchow, S., & Bail, H. J. (2005). Initial vascularization and tissue differentiation are influenced by fixation stability. Journal of Orthopaedic Research, 23(3), 639-645. https://doi.org/10.1016/j.orthres.2004.09.006.
      Litvin, Y. A., Zakirova, E. Y., Zhuravleva, M. N., & Rizvanov, A. A. (2016). Generation of plasmid DNA expressing species-specific horse VEGF164 and FGF2 factors for gene therapy. Bionanoscience, 6(4), 550-553. https://doi.org/10.1007/s12668-016-0273-2.
      Loftus, J. P., Black, S. J., Pettigrew, A., Abrahamsen, E. J., & Belknap, J. K. (2007). Early laminar events involving endothelial activation in horses with black walnut- induced laminitis. American Journal of Veterinary Research, 68(11), 1205-1211. https://doi.org/10.2460/ajvr.68.11.1205.
      MacEachern, K. E., Smith, G. L., & Nolan, A. M. (1997). Methods for the isolation, culture and characterisation of equine pulmonary artery endothelial cells. Research in Veterinary Science, 62(2), 147-152. https://doi.org/10.1016/s0034-5288(97)90137-5.
      Maia, V. N., Batista, A. M., Neto, S. C., Silva, D. M. F., Adriao, M., & Wischral, A. (2016). Expression of angiogenic factors and luteinizing hormone receptors in the corpus luteum of mares induced to ovulate with deslorelin acetate. Theriogenology, 85(3), 461-465. https://doi.org/10.1016/j.theriogenology.2015.09.025.
      Martano, M., Power, K., Restucci, B., Pagano, I., Altamura, G., Borzacchiello, G., & Maiolino, P. (2018). Expression of vascular endothelial growth factor (VEGF) in equine sarcoid. Bmc Veterinary Research, 14, 9. https://doi.org/10.1186/s12917-018-1576-z.
      Masaki, T., & Sawamura, T. (2006). Endothelin and endothelial dysfunction. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 82(1), 17-24. https://doi.org/10.2183/pjab.82.17.
      Matsuda, Y., Hagio, M., & Ishiwata, T. (2013). Nestin: A novel angiogenesis marker and possible target for tumor angiogenesis. World Journal of Gastroenterology, 19(1), 42-48. https://doi.org/10.3748/wjg.v19.i1.42.
      Meldolesi, J. (2018). Exosomes and ectosomes in intercellular communication. Current Biology, 28(8), R435-R444. https://doi.org/10.1016/j.cub.2018.01.059.
      Melincovici, C. S., Bosca, A. B., Susman, S., Marginean, M., Mihu, C., Istrate, M., … Mihu, C. M. (2018). Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Romanian Journal of Morphology and Embryology, 59(2), 455-467.
      Menzies-Gow, N. J., Bailey, S. R., Berhane, Y., Brooks, A. C., & Elliott, J. (2008). Evaluation of the induction of vasoactive mediators from equine digital vein endothelial cells by endotoxin. American Journal of Veterinary Research, 69(3), 349-355. https://doi.org/10.2460/ajvr.69.3.349.
      Menzies-Gow, N. J., Bailey, S. R., Katz, L. M., Marr, C. M., & Elliott, J. (2004). Endotoxin-induced digital vasoconstriction in horses: Associated changes in plasma concentrations of vasoconstrictor mediators. Equine Veterinary Journal, 36(3), 273-278. https://doi.org/10.2746/0425164044877260.
      Merkl, M., Ulbrich, S. E., Otzdorff, C., Herbach, N., Wanke, R., Wolf, E., … Bauersachs, S. (2010). Microarray analysis of equine endometrium at days 8 and 12 of pregnancy. Biology of Reproduction, 83(5), 874-886. https://doi.org/10.1095/biolreprod.110.085233.
      Miragliotta, V., Ipina, Z., Lefebvre-Lavoie, J., Lussier, J. G., & Theoret, C. L. (2008). Equine CTNNB1 and PECAM1 nucleotide structure and expression analyses in an experimental model of normal and pathological wound repair. BMC Physiology, 8(1), 1. https://doi.org/10.1186/1472-6793-8-1.
      Miragliotta, V., Raphael, K., Ipina, Z., Lussier, J. G., & Theoret, C. L. (2009). Equine thrombospondin II and secreted protein acidic and cysteine-rich in a model of normal and pathological wound repair. Physiological Genomics, 38(2), 149-157. https://doi.org/10.1152/physiolgenomics.90383.2008.
      Moore, B. D., Balasuriya, U. B., Hedges, J. F., & MacLachlan, N. J. (2002). Growth characteristics of a highly virulent, a moderately virulent, and an avirulent strain of equine arteritis virus in primary equine endothelial cells are predictive of their virulence to horses. Virology, 298(1), 39-44. https://doi.org/10.1006/viro.2002.1466.
      Moore, C. P., Halenda, R. M., Grevan, V. L. R., & Collins, B. K. (1998). Post traumatic keratouveitis in horses. Equine Veterinary Journal, 30(5), 366-372. https://doi.org/10.1111/j.2042-3306.1998.tb04503.x.
      Moore, J. S., Shaw, C., Shaw, E., Buechner-Maxwell, V., Scarratt, W. K., Crisman, M., … Robertson, J. (2013). Melanoma in horses: Current perspectives. Equine Veterinary Education, 25(3), 144-151. https://doi.org/10.1111/j.2042-3292.2011.00368.x.
      Moore, R. M., Venugopalan, C. S., Sedrish, S. A., & Holmes, E. P. (1997). Role of endothelium and nitric oxide in the in vitro response of equine colonic venous rings to vasoconstrictor agents. American Journal of Veterinary Research, 58(10), 1145-1151.
      Morgan, R., Keen, J., Halligan, D., O’Callaghan, A., Andrew, R., Livingstone, D., … Hadoke, P. (2018). Species-specific regulation of angiogenesis by glucocorticoids reveals contrasting effects on inflammatory and angiogenic pathways. PLoS One, 13(2), 18. https://doi.org/10.1371/journal.pone.0192746.
      Morgan, R. A., Keen, J. A., Walker, B. R., & Hadoke, P. W. F. (2016). Vascular dysfunction in horses with endocrinopathic laminitis. PLoS One, 11(9), e0163815. https://doi.org/10.1371/journal.pone.0163815.
      Muellerleile, L. M., Buxbaum, B., Nell, B., & Fux, D. A. (2019). In-vitro binding analysis of anti-human vascular endothelial growth factor antibodies bevacizumab and aflibercept with canine, feline, and equine vascular endothelial growth factor. Research in Veterinary Science, 124, 233-238. https://doi.org/10.1016/j.rvsc.2019.03.018.
      Muller, K., Ellenberger, C., Hopper, H. O., & Schoon, H. A. (2012). Immunohistochemical study of angiogenesis and angiogenic factors in equine granulosa cell tumours. Research in Veterinary Science, 92(3), 471-477. https://doi.org/10.1016/j.rvsc.2011.02.016.
      Muller, K., Ellenberger, C., & Schoon, H. A. (2009). Histomorphological and immunohistochemical study of angiogenesis and angiogenic factors in the ovary of the mare. Research in Veterinary Science, 87(3), 421-431. https://doi.org/10.1016/j.rvsc.2009.04.011.
      Nagy, J. A., & Dvorak, H. F. (2012). Heterogeneity of the tumor vasculature: The need for new tumor blood vessel type-specific targets. Clinical & Experimental Metastasis, 29(7), 657-662. https://doi.org/10.1007/s10585-012-9500-6.
      Nowak-Sliwinska, P., Alitalo, K., Allen, E., Anisimov, A., Aplin, A. C., Auerbach, R., … Griffioen, A. W. (2018). Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis, 21(3), 425-532. https://doi.org/10.1007/s10456-018-9613-x.
      O'Rourke, F., Mandle, T., Urbich, C., Dimmeler, S., Michaelis, U. R., Brandes, R. P., … Kempf, V. A. J. (2015). Reprogramming of myeloid angiogenic cells by Bartonella henselae leads to microenvironmental regulation of pathological angiogenesis. Cellular Microbiology, 17(10), 1447-1463. https://doi.org/10.1111/cmi.12447.
      Otzen, H., Sieme, H., Oldenhof, H., Kassens, A., Ertmer, F., Rode, K., … Meinecke, B. (2016). Equine endometrial vascular pattern changes during the estrous cycle examined by Narrow Band Imaging hysteroscopy. Animal Reproduction Science, 166, 80-89. https://doi.org/10.1016/j.anireprosci.2016.01.006.
      Palmer, O. R., Braybrooks, G. G., Cao, A. A., Diaz, J. A., & Greve, J. M. (2019). Collateral vein dynamics in mouse models of venous thrombosis: Pathways consistent with humans. Thrombosis Research, 182, 116-123. https://doi.org/10.1016/j.thromres.2019.08.018.
      Park, M. J., Lee, J., Byeon, J. S., Jeong, D. U., Gu, N. Y., Cho, I. S., & Cha, S. H. (2018). Effects of three-dimensional spheroid culture on equine mesenchymal stem cell plasticity. Veterinary Research Communications, 42(3), 171-181. https://doi.org/10.1007/s11259-018-9720-6.
      Pascucci, L., Alessandri, G., Dall'Aglio, C., Mercati, F., Coliolo, P., Bazzucchi, C., … Ceccarelli, P. (2014). Membrane vesicles mediate pro-angiogenic activity of equine adipose-derived mesenchymal stromal cells. Veterinary Journal, 202(2), 361-366. https://doi.org/10.1016/j.tvjl.2014.08.021.
      Pearce, J. W., Janardhan, K. S., Caldwell, S., & Singh, B. (2007). Angiostatin and integrin alpha v beta 3 in the feline, bovine, canine, equine, porcine and murine retina and cornea. Veterinary Ophthalmology, 10(5), 313-319. https://doi.org/10.1111/j.1463-5224.2007.00560.x.
      Peroni, J. F., Moore, J. N., Noschka, E., Grafton, M. E., Aceves-Avila, M., Lewis, S. J., & Robertson, T. P. (2006). Predisposition for venoconstriction in the equine laminar dermis: Implications in equine laminitis. Journal of Applied Physiology, 100(3), 759-763. https://doi.org/10.1152/japplphysiol.00794.2005.
      Peters, E. B. (2018). Endothelial progenitor cells for the vascularization of engineered tissues. Tissue Engineering Part B: Reviews, 24(1), 1-24. https://doi.org/10.1089/ten.TEB.2017.0127.
      Pichereau, F., Decory, M., & Ramos, G. C. (2014). Autologous platelet concentrate as a treatment for horses with refractory fetlock osteoarthritis. Journal of Equine Veterinary Science, 34(4), 489-493. https://doi.org/10.1016/j.jevs.2013.10.004.
      Plendl, J. (2000). Angiogenesis and vascular regression in the ovary. Anatomia, Histologia, Embryologia, 29(5), 257-266. https://doi.org/10.1046/j.1439-0264.2000.00265.x.
      Poredos, P., & Jezovnik, M. K. (2018). Endothelial dysfunction and venous thrombosis. Angiology, 69(7), 564-567. https://doi.org/10.1177/0003319717732238.
      Potente, M., & Carmeliet, P. (2017). The link between angiogenesis and endothelial metabolism. Annual Review of Physiology, 79, 43-66. https://doi.org/10.1146/annurev-physiol-021115-105134.
      Rajashekhar, G., Willuweit, A., Patterson, C. E., Sun, P., Hilbig, A., Breier, G., … Clauss, M. (2006). Continuous endothelial cell activation increases angiogenesis: Evidence for the direct role of endothelium linking angiogenesis and inflammation. Journal of Vascular Research, 43(2), 193-204. https://doi.org/10.1159/000090949.
      Rajendran, P., Rengarajan, T., Thangavel, J., Nishigaki, Y., Sakthisekaran, D., Sethi, G., & Nishigaki, I. (2013). The vascular endothelium and human diseases. International Journal of Biological Sciences, 9(10), 1057-1069. https://doi.org/10.7150/ijbs.7502.
      Redmer, D. A., & Reynolds, L. P. (1996). Angiogenesis in the ovary. Reviews of Reproduction, 1(3), 182-192. https://doi.org/10.1530/ror.0.0010182.
      Ribatti, D., Vacca, A., Nico, B., Roncali, L., & Dammacco, F. (2001). Postnatal vasculogenesis. Mechanisms of Development, 100(2), 157-163. https://doi.org/10.1016/s0925-4773(00)00522-0.
      Rieger, J., Hopperdietzel, C., Kaessmeyer, S., Slosarek, I., Diecke, S., Richardson, K., & Plendl, J. (2018). Human and equine endothelial cells in a live cell imaging scratch assay in vitro. Clinical Hemorheology and Microcirculation, 70(4), 495-509. https://doi.org/10.3233/ch-189316.
      Risau, W. (1997). Mechanisms of angiogenesis. Nature, 386(6626), 671-674. https://doi.org/10.1038/386671a0.
      Rosenberg, J. B., Greengard, J. S., & Montgomery, R. R. (2000). Genetic induction of a releasable pool of factor VIII in human endothelial cells. Arteriosclerosis, Thrombosis, Vascular Biology, 20(12), 2689-2695. https://doi.org/10.1161/01.atv.20.12.2689.
      Roussel, F., & Dalion, J. (1988). Lectins as markers of endothelial-cells - comparative-study between human and animal-cells. Laboratory Animals, 22(2), 135-140. https://doi.org/10.1258/002367788780864457.
      Rundhaug, J. E. (2005). Matrix metalloproteinases and angiogenesis. Journal of Cellular and Molecular Medicine, 9(2), 267-285. https://doi.org/10.1111/j.1582-4934.2005.tb00355.x.
      Salter, M. M., Seeto, W. J., DeWitt, B. B., Hashimi, S. A., Schwartz, D. D., Lipke, E. A., & Wooldridge, A. A. (2015). Characterization of endothelial colony-forming cells from peripheral blood samples of adult horses. American Journal of Veterinary Research, 76(2), 174-187. https://doi.org/10.2460/ajvr.76.2.174.
      Sayasith, K., & Sirois, J. (2014). Expression and regulation of stromal cell-derived factor-1 (SDF1) and chemokine CXC motif receptor 4 (CXCR4) in equine and bovine preovulatory follicles. Molecular and Cellular Endocrinology, 391(1-2), 10-21. https://doi.org/10.1016/j.mce.2014.04.009.
      Schroder, K. (2019). Redox Control of Angiogenesis. Antioxidants & Redox Signaling, 30(7), 960-971. https://doi.org/10.1089/ars.2017.7429.
      Seeto, W. J., Tian, Y., Winter, R. L., Caldwell, F. J., Wooldridge, A. A., & Lipke, E. A. (2017). Encapsulation of equine endothelial colony forming cells in highly uniform, injectable hydrogel microspheres for local cell delivery. Tissue Engineering Part C: Methods, 23(11), 815-825. https://doi.org/10.1089/ten.TEC.2017.0233.
      Shank, A. M. M., Teixeria, L. B. C., & Dubielzig, R. R. (2019). Canine, feline, and equine corneal vascular neoplasia: A retrospective study (2007-2015). Veterinary Ophthalmology, 22(1), 76-87. https://doi.org/10.1111/vop.12571.
      Sharma, S., Sharma, M. C., & Sarkar, C. (2005). Morphology of angiogenesis in human cancer: A conceptual overview, histoprognostic perspective and significance of neoangiogenesis. Histopathology, 46(5), 481-489. https://doi.org/10.1111/j.1365-2559.2005.02142.x.
      Sharpe, A. N., Seeto, W. J., Winter, R. L., Zhong, Q., Lipke, E. A., & Wooldridge, A. A. (2016). Isolation of endothelial colony-forming cells from blood samples collected from the jugular and cephalic veins of healthy adult horses. American Journal of Veterinary Research, 77(10), 1157-1165. https://doi.org/10.2460/ajvr.77.10.1157.
      Shi, X., Zhang, W., Yin, L., Chilian, W. M., Krieger, J., & Zhang, P. (2017). Vascular precursor cells in tissue injury repair. Translational Research: The Journal of Laboratory and Clinical Medicine, 184, 77-100. https://doi.org/10.1016/j.trsl.2017.02.002.
      Siemerink, M. J., Klaassen, I., Vogels, I. M., Griffioen, A. W., Van Noorden, C. J., & Schlingemann, R. O. (2012). CD34 marks angiogenic tip cells in human vascular endothelial cell cultures. Angiogenesis, 15(1), 151-163. https://doi.org/10.1007/s10456-011-9251-z.
      Silva, L. A., Klein, C., Ealy, A. D., & Sharp, D. C. (2011). Conceptus-mediated endometrial vascular changes during early pregnancy in mares: An anatomic, histomorphometric, and vascular endothelial growth factor receptor system immunolocalization and gene expression study. Reproduction, 142(4), 593-603. https://doi.org/10.1530/rep-11-0149.
      Silver, K., Desormaux, A., Freeman, L. C., & Lillich, J. D. (2012). Expression of pleiotrophin, an important regulator of cell migration, is inhibited in intestinal epithelial cells by treatment with non-steroidal anti-inflammatory drugs. Growth Factors, 30(4), 258-266. https://doi.org/10.3109/08977194.2012.693920.
      Simons, M. (2005). Angiogenesis: Where do we stand now? Circulation, 111(12), 1556-1566. https://doi.org/10.1161/01.Cir.0000159345.00591.8f.
      Spiesschaert, B., Goldenbogen, B., Taferner, S., Schade, M., Mahmoud, M., Klipp, E., … Azab, W. (2015). Role of gB and pUS3 in Equine Herpesvirus 1 transfer between peripheral blood mononuclear cells and endothelial cells: A dynamic in vitro model. Journal of Virology, 89(23), 11899-11908. https://doi.org/10.1128/jvi.01809-15.
      Stokes, A. M., Venugopal, C. S., Hosgood, G., Eades, S. C., & Moore, R. M. (2006). Comparison of 2 endothelin-receptor antagonists on in vitro responses of equine palmar digital arterial and venous rings to endothelin-1. Canadian Journal of Veterinary Research = Revue Canadienne De Recherche Vétérinaire, 70(3), 197-205.
      Tang, D. G., & Conti, C. J. (2004). Endothelial cell development, vasculogenesis, angiogenesis, and tumor neovascularization: An update. Seminars in Thrombosis and Hemostasis, 30(1), 109-117. https://doi.org/10.1055/s-2004-822975.
      Tasev, D., Koolwijk, P., & van Hinsbergh, V. W. M. (2016). Therapeutic potential of human-derived endothelial colony-forming cells in animal models. Tissue Engineering Part B-Reviews, 22(5), 371-382. https://doi.org/10.1089/ten.teb.2016.0050.
      Tejero, J., Shiva, S., & Gladwin, M. T. (2019). Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiological Reviews, 99(1), 311-379. https://doi.org/10.1152/physrev.00036.2017.
      Teubner, A., Muller, K., Bartmann, C. P., Sieme, H., Klug, E., Zingrebe, B., & Schoon, H. A. (2015). Effects of an anabolic steroid (Durateston) on testicular angiogenesis in peripubertal stallions. Theriogenology, 84(3), 323-332. https://doi.org/10.1016/j.theriogenology.2015.03.022.
      Theoret, C. L. (2004). Wound repair in the horse: Problems and proposed innovative solutions. Clinical Techniques in Equine Practice, 3(2), 134-140. https://doi.org/10.1053/j.ctep.2004.08.010.
      Tracey, A. K., Alcott, C. J., Schleining, J. A., Safayi, S., Zaback, P. C., Hostetter, J. M., & Reinertson, E. L. (2014). The effects of topical oxygen therapy on equine distal limb dermal wound healing. Canadian Veterinary Journal-Revue Veterinaire Canadienne, 55(12), 1146-1152.
      Turek, J. J., Lamar, C. H., Fessler, J. F., & Bottoms, G. D. (1987). Ultrastructure of equine endothelial cells exposed to endotoxin and flunixin meglumine and equine neutrophils. American Journal of Veterinary Research, 48(9), 1363-1366.
      Venugopal, C. S., Holmes, E. P., Koch, C. E., Curtis, L. A., Holm, A. S., & Moore, R. M. (2001). In vitro pharmacologic effect of two endothelin-1 antagonists on equine colonic arteries and veins. American Journal of Veterinary Research, 62(2), 154-159. https://doi.org/10.2460/ajvr.2001.62.154.
      Wakelin, K. A. (2015). Viral proteins as novel therapeutics in chronic horse wounds. (Bachelor of Biomedical Sciences with Honours Thesis). University of Otago, Dunedin, New Zealand. Retrieved from https://ourarchive.otago.ac.nz/handle/10523/6072?show=full.
      Wakelin, K. A., Wise, L. M., Bodaan, C. J., Mercer, A. A., Riley, C. B., & Theoret, C. L. (2016). Orf virus interleukin-10 and vascular endothelial growth factor-E modulate gene expression in cultured equine dermal fibroblasts. Veterinary Dermatology, 27(5), 434-e114. https://doi.org/10.1111/vde.12370.
      Wang, R., Chadalavada, K., Wilshire, J., Kowalik, U., Hovinga, K. E., Geber, A., … Tabar, V. (2010). Glioblastoma stem-like cells give rise to tumour endothelium. Nature, 468(7325), 829-U128. https://doi.org/10.1038/nature09624.
      Watson, E. D., & Ai-zi'abi, M. O. (2002). Characterization of morphology and angiogenesis in follicles of mares during spring transition and the breeding season. Reproduction, 124(2), 227-234. https://doi.org/10.1530/reprod/124.2.227.
      Watson, E. C., Grant, Z. L., & Coultas, L. (2017). Endothelial cell apoptosis in angiogenesis and vessel regression. Cellular and Molecular Life Sciences, 74(24), 4387-4403. https://doi.org/10.1007/s00018-017-2577-y.
      Wessels, J. M., Wu, L., Leyland, N. A., Wang, H. M., & Foster, W. G. (2014). The brain-uterus connection: Brain derived neurotrophic factor (BDNF) and its receptor (Ntrk2) are conserved in the mammalian uterus. PLoS One, 9(4), 10. https://doi.org/10.1371/journal.pone.0094036.
      Wilmink, J. M., & van Weeren, P. R. (2005). Second-intention repair in the horse and pony and management of exuberant granulation tissue. The Veterinary Clinics of North America. Equine Practice, 21(1), 15-32. https://doi.org/10.1016/j.cveq.2004.11.014.
      Winter, R. L., Seeto, W. J., Tian, Y., Caldwell, F. J., Lipke, E. A., & Wooldridge, A. A. (2018). Growth and function of equine endothelial colony forming cells labeled with semiconductor quantum dots. BMC Veterinary Research, 14(1), 247. https://doi.org/10.1186/s12917-018-1572-3.
      Winter, R. L., Tian, Y., Caldwell, F. J., Seeto, W. J., Koehler, J. W., Pascoe, D. A., … Wooldridge, A. A. (2020). Cell engraftment, vascularization, and inflammation after treatment of equine distal limb wounds with endothelial colony forming cells encapsulated within hydrogel microspheres. BMC Veterinary Research, 16(1), 43. https://doi.org/10.1186/s12917-020-2269-y.
      Wise, L. M., Bodaan, C. J., Stuart, G. S., Real, N. C., Lateef, Z., Mercer, A. A., … Theoret, C. L. (2018). Treatment of limb wounds of horses with orf virus IL-10 and VEGF-E accelerates resolution of exuberant granulation tissue, but does not prevent its development. PLoS One, 13(5), 20. https://doi.org/10.1371/journal.pone.0197223.
      Wunn, D., Wardrop, K. J., Meyers, K., Kramer, J., & Ragle, C. (1999). Culture and characterization of equine terminal arch endothelial cells and hoof keratinocytes. American Journal of Veterinary Research, 60(1), 128-132.
      Xing, D., Li, P., Gong, K., Yang, Z., Yu, H., Hage, F. G., … Chen, Y.-F. (2012). Endothelial cells overexpressing interleukin-8 receptors reduce inflammatory and neointimal responses to arterial injury. Circulation, 125(12), 1533-U1232. https://doi.org/10.1161/Circulationaha.111.078436.
      Yano, A., Fujii, Y., Iwai, A., Kageyama, Y., & Kihara, K. (2006). Glucocorticoids suppress tumor angiogenesis and in vivo growth of prostate cancer cells. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 12(10), 3003-3009. https://doi.org/10.1158/1078-0432.Ccr-05-2085.
      Yoo, S. Y., & Kwon, S. M. (2013). Angiogenesis and its therapeutic opportunities. Mediators of Inflammation, 2013, 1-11. https://doi.org/10.1155/2013/127170.
      Zecchin, A., Kalucka, J., Dubois, C., & Carmeliet, P. (2017). How endothelial cells adapt their metabolism to form vessels in tumors. Frontiers in Immunology, 8, 1750. https://doi.org/10.3389/fimmu.2017.01750.
      Zhou, Y. J., Yan, H., Guo, M. Q., Zhu, J. H., Xiao, Q. Z., & Zhang, L. (2013). Reactive oxygen species in vascular formation and development. Oxidative Medicine and Cellular Longevity, 2013, 374963. https://doi.org/10.1155/2013/374963.
      Zipplies, J. K., Hauck, S. M., Schoeffmann, S., Amann, B., van der Meijden, C. H., Stangassinger, M., … Deeg, C. A. (2010). Kininogen in autoimmune uveitis: Decrease in peripheral blood stream versus increase in target tissue. Investigative Ophthalmology & Visual Science, 51(1), 375-382. https://doi.org/10.1167/iovs.09-4094.
      Zizzadoro, C., Caruso, M., Putignano, C., Crescenzo, G., Ormas, P., & Belloli, C. (2011). Effects of endotoxin and influence of cyclooxygenase-2 on beta-adrenergic mediated relaxation in isolated equine digital artery. The Veterinary Journal, 190(2), e48-e53. https://doi.org/10.1016/j.tvjl.2011.03.006.
    • Contributed Indexing:
      Keywords: angiogenesis, endothelium, vascular; horses; neovascularization, pathologic; neovascularization, physiologic
    • الموضوع:
      Date Created: 20200709 Date Completed: 20210902 Latest Revision: 20210902
    • الموضوع:
      20221213
    • الرقم المعرف:
      10.1111/ahe.12588
    • الرقم المعرف:
      32639627