Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Interactions between perceptions of fatigue, effort, and affect decrease knee extensor endurance performance following upper body motor activity, independent of changes in neuromuscular function.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Blackwell Country of Publication: United States NLM ID: 0142657 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-8986 (Electronic) Linking ISSN: 00485772 NLM ISO Abbreviation: Psychophysiology Subsets: MEDLINE
    • بيانات النشر:
      Publication: Malden, MA : Blackwell
      Original Publication: Baltimore, Williams & Wilkins.
    • الموضوع:
    • نبذة مختصرة :
      Prior exercise has previously been shown to impair subsequent endurance performance in non-activated muscles. Declines in the neuromuscular function and altered perceptual/affective responses offer possible mechanisms through which endurance performance may be limited in these remote muscle groups. We thus conducted two experiments to better understand these performance-limiting mechanisms. In the first experiment, we examined the effect of prior handgrip exercise on the behavioral, perceptual, and affective responses to a sustained, sub-maximal contraction of the knee extensors. In the second experiment, transcranial magnetic stimulation was used to assess the neuromuscular function of the knee extensors before and after the handgrip exercise. The results of the first experiment demonstrated prior handgrip exercise increased the perceptions of effort and reduced affective valence during the subsequent knee extensor endurance exercise. Both effort and affect were associated with endurance performance. Subjective ratings of fatigue were also increased by the preceding handgrip exercise but were not directly related to knee extensor endurance performance. However, perceptions of fatigue were correlated with heightened effort perception and reduced affect during the knee extensor contraction. In the second experiment, prior handgrip exercise did not significantly alter the neuromuscular function of the knee extensors. The findings of the present study indicate that motor performance in the lower limbs following demanding exercise in the upper body appears to be regulated by complex, cognitive-emotional interactions, which may emerge independent of altered neuromuscular function. Subjective fatigue states are implicated in the control of perceptual and affective processes responsible for the regulation of endurance performance.
      (© 2020 The Authors. Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.)
    • References:
      Aboodarda, S. J., Copithorne, D. B., Power, K. E., Drinkwater, E., & Behm, D. G. (2015). Elbow flexor fatigue modulates central excitability of the knee extensors. Applied Physiology, Nutrition and Metabolism, 40(9), 924-930. https://doi.org/10.1139/apnm-2015-0088.
      Aboodarda, S. J., Šambaher, N., Millet, G. Y., & Behm, D. G. (2017). Knee extensors neuromuscular fatigue changes the corticospinal pathway excitability in biceps brachii muscle. Neuroscience, 340, 477-486. https://doi.org/10.1016/j.neuroscience.2016.10.065.
      Amann, M., Venturelli, M., Ives, S., McDaniel, J., Layec, G., Rossman, M. J., & Richardson, R. S. (2013). Peripheral fatigue limits endurance exercise via a sensory feedback-mediated reduction in spinal motoneuronal output. Journal of Applied Physiology, 115(3), 355-364. https://doi.org/10.1152/japplphysiol.00049.2013.
      Bakdash, J. Z., & Marusich, L. R. (2017). Repeated measures correlation. Frontiers in Psychology, 8, 456. https://doi.org/10.3389/fpsyg.2017.00456.
      Bangsbo, J., Madsen, K., Kiens, B., & Richter, E. A. (1996). Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man. Journal of Physiology, 495(2), 587-596. https://doi.org/10.1113/jphysiol.1996.sp021618.
      Barbosa, T. C., Vianna, L. C., Fernandes, I. A., Prodel, E., Rocha, H. N. M., Garcia, V. P., … Nobrega, A. C. L. (2016). Intrathecal fentanyl abolishes the exaggerated blood pressure response to cycling in hypertensive men. Journal of Physiology, 594, 715-725. https://doi.org/10.1113/JP271335.
      Barrett, L. F. (2017). The theory of constructed emotion: An active inference account of interoception and categorization. Social Cognitive and Affective Neuroscience, 12(1), 1-23. https://doi.org/10.1093/scan/nsw154.
      Benjamini, Y., & Yosef, H. (2000). On the adaptive control of the false discovery rate in multiple testing with independent statistics. Journal of Educational and Behavioral Statistics, 25(1), 60-83. https://doi.org/10.3102/10769986025001060.
      Bishop, P. A., & Herron, R. L. (2015). Use and misuse of the Likert item responses and other ordinal measures. International Journal of Exercise Science, 8(3), 297-302.
      Borg, G. (1982). The psychophysical bases of perceived exertion. Medicine & Science in Sports & Exercise, 14(5), 377-381. https://doi.org/10.1249/00005768-198205000-00012.
      Borg, G. (1986). Psychophysical studies of effort and exertion: Some historical, theoretical and empirical aspects. In G. Borg & D. Ottoson (Eds.), The perception of exertion in physical work (pp. 3-12). New York, NY: Macmillan. https://doi.org/10.1007/978-1-349-08946-8_1.
      Broxterman, R. M., Hureau, T. J., Layec, G., Morgan, D. E., Bledsoe, A. D., Jessop, J. E., … Richardson, R. S. (2018). Influence of group III/IV muscle afferents on small muscle mass exercise performance: A bioenergetics perspective. Journal of Physiology, 596(12), 2301-2314. https://doi.org/10.1113/JP275817.
      Broxterman, R. M., Layec, G., Hureau, T. J., Morgan, D. E., Bledsoe, A. D., Jessop, J. E., … Richardson, R. S. (2017). Bioenergetics and ATP synthesis during exercise: Role of group III/IV muscle afferents. Medicine and Science in Sports and Exercise, 49(12), 2404-2413. https://doi.org/10.1249/MSS.0000000000001391.
      Carifio, J., & Perla, R. (2008). Resolving the 50-year debate around using and misusing Likert scales. Medical Education, 42(12), 1150-1152. https://doi.org/10.1111/j.1365-2923.2008.03172.x.
      Christian, R. J., Bishop, D. J., Billaut, F., & Girard, O. (2014). The role of sense of effort on self-selected cycling power output. Frontiers in Physiology, 5, 115. https://doi.org/10.3389/fphys.2014.00115.
      Craig, A. D. (2002). How do you feel? Interoception: The sense of the physiological condition of the body. Nature Reviews Neuroscience, 3(8), 655-666. https://doi.org/10.1038/nrn894.
      Damasio, A., & Carvalho, G. B. (2013). The nature of feelings: Evolutionary and neurobiological origins. Nature Reviews Neuroscience, 14(2), 143-152. https://doi.org/10.1038/nrn3403.
      de Lima, F. D., Bottaro, M., de Oliveiera Valeriano, R., Cruz, L., Battalini, C. L., Vieira, C. A., & de Oliveira, R. J. (2018). Cancer-related fatigue and muscle quality in Hodgkin’s lymphoma survivors. Integrated Cancer Therapies, 17(2), 299-305. https://doi.org/10.1177/1534735417712009.
      de Morree, H. M., Klein, C., & Marcora, S. M. (2012). Perception of effort reflects central motor command during movement execution. Psychophysiology, 49, 1242-1253. https://doi.org/10.1016/j.ijpsycho.2012.06.042.
      Decorte, N., Lafaix, P. A., Millet, G. Y., Wuyam, B., & Verges, S. (2012). Central and peripheral fatigue kinetics during exhaustive constant-load cycling. Scandinavian Journal of Medicine and Science in Sports, 22(3), 381-391. https://doi.org/10.1111/j.1600-0838.2010.01167.x.
      Dekerle, J., Greenhouse-Tucknott, A., Wrightson, J. G., Schäfer, L., & Ansdell, P. (2019). Improving the measurement of TMS-assessed voluntray activation in the knee extensors. PLoS One, 14(6), e0216981. https://doi.org/10.1371/journal.pone.0216981.
      Doix, A.-C.-M., Lefèvre, F., & Colson, S. S. (2013). Time course of the cross-over effect of fatigue on the contralateral muscle after unilateral exercise. PLoS One, 8(5), e64910. https://doi.org/10.1371/journal.pone.0064910.
      Doix, A.-C.-M., Wachholz, F., Marterer, N., Immler, L., Insam, K., & Federolf, P. A. (2018). Is the cross-over effect of a unilateral high-intensity leg extension influenced by the sex of the participants? Biology of Sex Differences, 9, 29. https://doi.org/10.1186/s13293-018-0188-4.
      Dunaway Young, S., Montes, J., Kramer, S. S., Podwika, B., Rao, A. K., & De Vivo, D. C. (2019). Perceived fatigue in spinal muscular atrophy: A pilot study. Journal of Neuromuscular Disorders, 6(1), 109-117. https://doi.org/10.3233/JND-180342.
      Gruet, M., Temesi, J., Rupp, T., Levy, P., Verges, S., & Millet, G. Y. (2014). Dynamics of corticospinal changes during and after a high-intensity quadriceps exercise. Experimental Physiology, 99(8), 1053-1064. https://doi.org/10.1113/expphysiol.2014.078840.
      Halperin, I., Aboodarda, S. J., & Behm, D. G. (2014). Knee extension fatigue attenuates repeated force production of the elbow flexors. European Journal of Sport Science, 14(8), 823-829. https://doi.org/10.1080/17461391.2014.911355.
      Halperin, I., Chapman, D. W., & Behm, D. G. (2015). Non-local muscle fatigue: Effects and possible mechanisms. European Journal of Applied Physiology, 115(10), 2031-2048. https://doi.org/10.1007/s00421-015-3249-y.
      Halperin, I., & Emanuel, A. (2020). Rating of perceived effort: Methodological concerns and future directions. Sports Medicine, 50, 679-687. https://doi.org/10.1007/s40279-019-01229-z.
      Hardy, C. J., & Rejeski, W. J. (1989). Not what, but how one feels: The measurement of affect during exercise. Journal of Sport & Exercise Psychology, 11, 304-317. https://doi.org/10.1123/jsep.11.3.304.
      Harpe, S. E. (2015). How to analyze Likert and other rating scale data. Currents in Pharmacy Teaching and Learning, 7(6), 836-850. https://doi.org/10.1016/j.cptl.2015.08.001.
      Harris, S., & Bray, S. R. (2019). Effects of mental fatigue on exercise decision-making. Psychology of Sport and Exercise, 44, 1-8. https://doi.org/10.1016/j.psychsport.2019.04.005.
      Hartman, M. E., Ekkekakis, P., Dicks, N. D., & Pettitt, R. W. (2019). Dynamics of pleasure-displeasure at the limit of exercise tolerance: Conceptualizing the sense of exertional physical fatigue as an affective response. Journal of Experimental Biology, 222, jeb186585. https://doi.org/10.1242/jeb.186585.
      Hermens, H. J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, 10(5), 361-374. https://doi.org/10.1016/S1050-6411(00)00027-4.
      Hockey, G. R. J. (2011). A motivational control theory of cognitive fatigue. In P. L. Ackerman (Ed.), Cognitive fatigue: Multidisciplinary perspectives on current research and future applications (pp. 167-188). Washington, DC: American Psychological Association. https://doi.org/10.1037/12343-008.
      Jiang, Z., Wang, X. F., Kisiel-Sajewicz, K., Yan, J. H., & Yue, G. H. (2012). Strengthened functional connectivity in the brain during muscle fatigue. NeuroImage, 60(1), 728-737. https://doi.org/10.1016/j.neuroimage.2011.12.013.
      Johnson, M. A., Sharpe, G. R., Williams, N. C., & Hannah, R. (2015). Locomotor muscle fatigue is not critically regulated after prior upper body exercise. Journal of Applied Physiology, 119(7), 840-850. https://doi.org/10.1152/japplphysiol.00072.2015.
      Jones, H. S., Williams, E. L., Marchant, D., Sparks, S. A., Midgley, A. W., Bridge, C. A., & McNaughton, L. (2015). Distance-dependent association of affect with pacing strategy in cycling time trials. Medicine and Science in Sports and Exercise, 47(4), 825-832. https://doi.org/10.1249/MSS.0000000000000475.
      Kennedy, A., Hug, F., Sveistrup, H., & Guével, A. (2013). Fatiguing handgrip exercise alters maximal force-generating capacity of plantar-flexors. European Journal of Applied Physiology, 113(3), 559-566. https://doi.org/10.1007/s00421-012-2462-1.
      Knapp, T. R. (1990). Treating ordinal scales as interval scales: An attempt to resolve the controversy. Nursing Research, 39(2), 121-123. https://doi.org/10.1097/00006199-199003000-00019.
      Kuppuswamy, A. (2017). The fatigue conundrum. Brain, 140(8), 2240-2245. https://doi.org/10.1093/brain/awx153.
      Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t -tests and ANOVAs. Frontiers in Psychology, 4, 863. https://doi.org/10.3389/fpsyg.2013.00863.
      Lakens, D. (2017). Equivalence tests: A practical primer for t tests, correlations, and meta-analyses. Social Psychological and Personality Science, 8(4), 355-362. https://doi.org/10.1177/1948550617697177.
      Lampropoulou, S. I., & Nowicky, A. V. (2014). Perception of effort changes following an isometric fatiguing exercise of elbow flexors. Motor Control, 18(2), 146-164. https://doi.org/10.1123/mc.2013-0010.
      Lewis, G. N., Signal, N., & Taylor, D. (2014). Reliability of lower limb motor evoked potentials in stroke and healthy populations: How many responses are needed? Clinical Neurophysiology, 125(4), 748-754. https://doi.org/10.1016/j.clinph.2013.07.029.
      Li, Y., Power, K. E., Marchetti, P. H., & Behm, D. G. (2019). The effect of dominant first dorsal interosseous fatigue on the force production of a contralateral homologous and heterologous muscle. Applied Physiology, Nutrition and Metabolism, 44(7), 704-712. https://doi.org/10.1139/apnm-2018-0583.
      Lindquist, K. A., Satpute, A. B., Wager, T. D., Weber, J., & Barrett, L. F. (2016). The brain basis of positive and negative affect: Evidence from a meta-analysis of the human neuroimaging literature. Cerebral Cortex, 26, 1910-1922. https://doi.org/10.1093/cercor/bhv001.
      Loy, B. D., Taylor, R. L., Fling, B. W., & Horak, F. B. (2017). Relationship between perceived fatigue and performance fatigability in people with Multiple Sclerosis: A systematic review and meta-analysis. Journal of Psychosomatic Research, 100, 1-7. https://doi.org/10.1016/j.jpsychores.2017.06.017.
      Manjaly, Z.-M., Harrison, N. A., Critchley, H. D., Do, C. T., Stefanics, G., Wenderoth, N., … Stephan, K. E. (2019). Pathophysiological and cognitive mechanisms of fatigue in multiple sclerosis. Journal of Neurology, Neurosurgery & Psychiatry, 90(6), 642-651. https://doi.org/10.1136/jnnp-2018-320050.
      Marcora, S. M. (2008). Do we really need a central governor to explain brain regulation of exercise performance? European Journal of Applied Physiology, 104(5), 929-931. https://doi.org/10.1007/s00421-008-0818-3.
      Marcora, S. M. (2009). Perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart, and lungs. Journal of Applied Physiology, 106, 2060-2062. https://doi.org/10.1152/japplphysiol.90378.2008.
      Marcora, S. M. (2010). Effort: Perception of. In E. B. Goldstein (Ed.), Encyclopedia of perception (pp. 380-383). Thousand Oaks, CA: Sage. https://doi.org/10.4135/9781412972000.n119.
      Marcora, S. M., Bosio, A. B., & de Morree, H. M. (2008). Locomotor muscle fatigue increases cardiorespiratory responses and reduces performance during intense cycling exercise independently from metabolic stress. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 294(3), R874-R883. https://doi.org/10.1152/ajpregu.00678.2007.
      Marcora, S. M., & Staiano, W. (2010). The limit to exercise tolerance in humans: Mind over muscle? European Journal of Applied Physiology, 109(4), 763-770. https://doi.org/10.1007/s00421-010-1418-6.
      McNeil, C. J., Giesebrecht, S., Gandevia, S. C., & Taylor, J. L. (2011). Behaviour of the motoneurone pool in a fatiguing submaximal contraction. Journal of Physiology, 589(14), 3533-3544. https://doi.org/10.1113/jphysiol.2011.207191.
      Meyniel, F., Sergent, C., Rigoux, L., Daunizeau, J., & Pessiglione, M. (2013). Neurocomputational account of how the human brain decides when to have a break. Proceedings of the National Academy of Sciences of the United States of America, 110(7), 2641-2646. https://doi.org/10.1073/pnas.1211925110.
      Micklewright, D., St Clair Gibson, A., Gladwell, V., & Al Salman, A. (2017). Development and validity of the rating-of-fatigue scale. Sports Medicine, 47(11), 2375-2393. https://doi.org/10.1007/s40279-017-0711-5.
      Mitchell, J. H., Reeves, D. R., Rogers, H. B., & Secher, N. H. (1989). Epidural anaesthesia and cardiovascular responses to static exercise in man. Journal of Physiology, 417, 13-24. https://doi.org/10.1113/jphysiol.1989.sp017787.
      Morgan, P. T., Bailey, S. J., Banks, R. A., Fulford, J., Vanhatalo, A., & Jones, A. M. (2019). Contralateral fatigue during severe-intensity single-leg exercise: Influence of acute acetaminophen ingestion. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 317, R346-R354. https://doi.org/10.1152/ajpregu.00084.2019.
      Mosso, A. (1891). La Fatica. Hollywood, AL: Treves.
      Noakes, T. D. (2012). Fatigue is a brain-derived emotion that regulates the exercise behavior to ensure the protection of whole body homeostasis. Frontiers in Physiology, 3, 82. https://doi.org/10.3389/fphys.2012.00082.
      Nordsborg, N., Mohr, M., Pedersen, L. D., Nielsen, J. J., Langberg, H., & Bangsbo, J. (2003). Muscle interstitial potassium kinetics during intense exhaustive exercise: Effect of previous arm exercise. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 285, 143-148. https://doi.org/10.1152/ajpregu.00029.2003.
      Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9(1), 97-113. https://doi.org/10.1016/0028-3932(71)90067-4.
      Pageaux, B., & Gaveau, J. (2016). Studies using pharmacological blockade of muscle afferents provide new insights into the neurophysiology of perceived exertion. Journal of Physiology, 594(18), 5049-5051. https://doi.org/10.1113/JP272585.
      Pageaux, B., & Lepers, R. (2016). Fatigue induced by physical and mental exertion increases perception of effort and impairs subsequent endurance performance. Frontiers in Physiology, 7, 587. https://doi.org/10.3389/fphys.2016.00587.
      Pageaux, B., Marcora, S. M., & Lepers, R. (2013). Prolonged mental exertion does not alter neuromuscular function of the knee extensors. Medicine and Science in Sports and Exercise, 45(12), 2254-2264. https://doi.org/10.1249/MSS.0b013e31829b504a.
      Pageaux, B., Marcora, S. M., Rozand, V., & Lepers, R. (2015). Mental fatigue induced by prolonged self-regulation does not exacerbate central fatigue during subsequent whole-body endurance exercise. Frontiers in Human Neuroscience, 9, 67. https://doi.org/10.3389/fnhum.2015.00067.
      Pigeon, W. R., Sateia, M. J., & Ferguson, R. J. (2003). Distinguishing between excessive daytime sleepiness and fatigue: Toward improved detection and treatment. Journal of Psychosomatic Research, 54(1), 61-69. https://doi.org/10.1016/S0022-3999(02)00542-1.
      Pike, N. (2011). Using false discovery rates for multiple comparisons in ecology and evolution. Methods in Ecology and Evolution, 2(3), 278-282. https://doi.org/10.1111/j.2041-210X.2010.00061.x.
      Prak, R. F., van der Naalt, J., & Zijdewind, I. (2019). Self-reported fatigue after mild traumatic brain injury is not associated with performance fatigability during a sustained maximal contraction. Frontiers in Physiology, 9, 1919. https://doi.org/10.3389/fphys.2018.01919.
      R Core Team. (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
      Rattey, J., Martin, P. G., Kay, D., Cannon, J., & Marino, F. E. (2006). Contralateral muscle fatigue in human quadriceps muscle: Evidence for a centrally mediated fatigue response and cross-over effect. European Journal of Applied Physiology, 452, 199-207. https://doi.org/10.1007/s00424-005-0027-4.
      Renfree, A., West, J., Corbett, M., Rhoden, C., & Gibson, S. C. A. (2012). Complex interplay between determinants of pacing and performance during 20-km cycle time trials. International Journal of Sports Physiology and Performance, 7(2), 121-129. https://doi.org/10.1123/ijspp.7.2.121.
      Ross, E. Z., Middleton, N., Shave, R., George, K., & Nowicky, A. (2007). Corticomotor excitability contributes to neuromuscular fatigue following marathon running in man. Experimental Physiology, 92(2), 417-426. https://doi.org/10.1113/expphysiol.2006.035972.
      Rossi, S., Hallett, M., Rossini, P. M., & Pascual-Leone, A. (2011). Screening questionnaire before TMS: An update. Clinical Neurophysiology, 122(8), 1686. https://doi.org/10.1016/j.clinph.2010.12.037.
      Šambaher, N., Aboodarda, S. J., & Behm, D. G. (2016). Bilateral knee extensor fatigue modulates force and responsiveness of the corticospinal pathway in the non-fatigued, dominant elbow flexors. Frontiers in Human Neuroscience, 10, 18. https://doi.org/10.3389/fnhum.2016.00018.
      Sidhu, S. K., Bentley, D. J., & Carroll, T. J. (2009). Locomotor exercise induces long-lasting impairments in the capacity of the human motor cortex to voluntarily activate knee extensor muscles. Journal of Applied Physiology, 106(2), 556-565. https://doi.org/10.1152/japplphysiol.90911.2008.
      Sidhu, S. K., Weavil, J. C., Venturelli, M., Garten, R. S., Rossman, M. J., Richardson, R. S., … Amann, M. (2014). Spinal μ-opioid receptor-sensitive lower limb muscle afferents determine corticospinal responsiveness and promote central fatigue in upper limb muscle. Journal of Physiology, 592(22), 5011-5024. https://doi.org/10.1113/jphysiol.2014.275438.
      Smith, S. A., Querry, R. G., Fadel, P. J., Gallagher, K. M., Stromstad, M., Ide, K., … Secher, N. H. (2003). Partial blockade of skeletal muscle somatosensory afferents attenuates baroreflex resetting during exercise in humans. Journal of Physiology, 551, 1013-1021. https://doi.org/10.1113/jphysiol.2003.044925.
      Souron, R., Besson, T., Mcneil, C. J., Lapole, T., & Millet, G. Y. (2018). An acute exposure to muscle vibration decreases knee extensors force production and modulates associated central nervous system excitability. Applied Physiology, Nutrition and Metabolism, 43, 427-436. https://doi.org/10.3389/fnhum.2017.00519.
      St Clair Gibson, A., Baden, D. A., Lambert, M. I., Lambert, E. V., Harley, Y. X. R., Hampson, D., … Noakes, T. D. (2003). The conscious perception of the sensation of fatigue. Sports Medicine, 33(3), 167-176. https://doi.org/10.2165/00007256-200333030-00001.
      Staiano, W., Bosio, A. B., de Morree, H. M., Rampinini, E., & Marcora, S. M. (2018). The cardinal exercise stopper: Muscle fatigue, muscle pain or perception of effort? Progress in Brain Research, 240, 175-200. https://doi.org/10.1016/bs.pbr.2018.09.012.
      Stephan, K. E., Manjaly, Z. M., Mathys, C. D., Weber, L. A. E., Paliwal, S., Gard, T., … Petzschner, F. H. (2016). Allostatic self-efficacy: A metacognitive theory of dyshomeostasis-induced fatigue and depression. Frontiers in Human Neuroscience, 10, 550. https://doi.org/10.3389/fnhum.2016.00550.
      Temesi, J., Gruet, M., Rupp, T., Verges, S., & Millet, G. Y. (2014). Resting and active motor thresholds versus stimulus-response curves to determine transcranial magnetic stimulation intensity in quadriceps femoris. Journal of Neuroengineering and Rehabilitation, 11(1), 40. https://doi.org/10.1186/1743-0003-11-40.
      The jamovi project. (2019). jamovi (1.0). Retrieved from https://www.jamovi.org.
      Todd, G., Taylor, J. L., & Gandevia, S. C. (2016). Measurement of voluntary activation based on transcranial magnetic stimulation over the motor cortex. Journal of Applied Physiology, 121(3), 678-686. https://doi.org/10.1152/japplphysiol.00293.2016.
      Triscott, S., Gordon, J., Kuppuswamy, A., King, N., Davey, N., & Ellaway, P. (2008). Differential effects of endurance and resistance training on central fatigue fatigue. Journal of Sports Sciences, 26(9), 941-951. https://doi.org/10.1080/02640410701885439.
      Volz, L. J., Eickhoff, S. B., Pool, E.-M., Fink, G. R., & Grefkes, C. (2015). Differential modulation of motor network connectivity during movements of the upper and lower limbs. NeuroImage, 119, 44-53. https://doi.org/10.1016/j.neuroimage.2015.05.101.
      Zénon, A., Sidibé, M., & Olivier, E. (2015). Disrupting the supplementary motor area makes physical effort appear less effortful. Journal of Neuroscience, 35(23), 8737-8744. https://doi.org/10.1523/JNEUROSCI.3789-14.2015.
    • Contributed Indexing:
      Keywords: TMS; affect; exercise tolerance; fatigue; perception of effort; voluntary activation
    • الموضوع:
      Date Created: 20200625 Date Completed: 20210706 Latest Revision: 20210706
    • الموضوع:
      20250114
    • الرقم المعرف:
      10.1111/psyp.13602
    • الرقم المعرف:
      32578885