Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

β-carboline chemical signals induce reveromycin production through a LuxR family regulator in Streptomyces sp. SN-593.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Actinomycetes bacteria produce diverse bioactive molecules that are useful as drug seeds. To improve their yield, researchers often optimize the fermentation medium. However, exactly how the extracellular chemicals present in the medium activate secondary metabolite gene clusters remains unresolved. BR-1, a β-carboline compound, was recently identified as a chemical signal that enhanced reveromycin A production in Streptomyces sp. SN-593. Here we show that BR-1 specifically bound to the transcriptional regulator protein RevU in the reveromycin A biosynthetic gene cluster, and enhanced RevU binding to its promoter. RevU belongs to the LuxR family regulator that is widely found in bacteria. Interestingly, BR-1 and its derivatives also enhanced the production of secondary metabolites in other Streptomyces species. Although LuxR-N-acyl homoserine lactone systems have been characterized in Gram-negative bacteria, we revealed LuxR-β-carboline system in Streptomyces sp. SN-593 for the production of secondary metabolites. This study might aid in understanding hidden chemical communication by β-carbolines.
    • References:
      Bassler, B. L. & Losick, R. Bacterially speaking. Cell 125, 237–246 (2006). (PMID: 10.1016/j.cell.2006.04.001)
      Bassler, B. L. Small talk: cell-to-cell communication in bacteria. Cell 109, 421–424 (2002). (PMID: 10.1016/S0092-8674(02)00749-3)
      Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell. Dev. Biol. 21, 319–346 (2005). (PMID: 10.1146/annurev.cellbio.21.012704.131001)
      Daniel-Ivad, M., Pimentel-Elardo, S. & Nodwell, J. R. Control of specialized metabolism by signaling and transcriptional regulation: opportunities for new platforms for drug discovery? Annu. Rev. Microbiol. 72, 25–48 (2018). (PMID: 10.1146/annurev-micro-022618-04245829799791)
      Horinouchi, S. & Beppu, T. Hormonal control by A-factor of morphological development and secondary metabolism in Streptomyces. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 83, 277–295 (2007). (PMID: 10.2183/pjab.83.277)
      Corre, C., Song, L., O’Rourke, S., Chater, K. F. & Challis, G. L. 2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc. Natl. Acad. Sci. USA. 105, 17510–17515 (2008). (PMID: 10.1073/pnas.0805530105)
      Recio, E., Colinas, Á., Rumbero, A., Aparicio, J. F. & Martin, J. F. PI factor, a novel type quorum-sensing Inducer elicits pimaricin production in Streptomyces natalensis. J. Biol. Chem. 279, 41586–41593 (2004).
      Kitani, S. et al. Avenolide, a Streptomyces hormone controlling antibiotic production in Streptomyces avermitilis. Proc. Natl. Acad. Sci. USA. 108, 16410–16415 (2011). (PMID: 10.1073/pnas.1113908108)
      Yamada, Y., Sugamura, K., Kondo, K., Yanagimoto, M. & Okada, H. The structure of inducing factors for virginiamycin production in Streptomyces virginiae. J. Antibiot. 40, 496–504 (1987). (PMID: 10.7164/antibiotics.40.496)
      Sato, K., Nihira, T., Sakuda, S., Yanagimoto, M. & Yamada, Y. Isolation and structure of a new butyrolactone autoregulator from Streptomyces sp. FRI-5. J. Ferment. Bioeng. 68, 170–173 (1989). (PMID: 10.1016/0922-338X(89)90131-1)
      Takano, E. et al. Purification and structural determination of SCB1, a γ-Butyrolactone that elicits antibiotic production in Streptomyces coelicolor A3(2). J. Biol. Chem. 275, 11010–11016 (2000). (PMID: 10.1074/jbc.275.15.11010)
      Arakawa, K., Tsuda, N., Taniguchi, A. & Kinashi, H. The butenolide signaling molecules SRB1 and SRB2 induce lankacidin and lankamycin production in Streptomyces rochei. Chembiochem 13, 1447–1457 (2012). (PMID: 10.1002/cbic.201200149)
      Takano, E. γ-Butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr. Opin. Microbiol. 9, 287–294 (2006).
      Chater, K. F., Biró, S., Lee, K. J., Palmer, T. & Schrempf, H. The complex extracellular biology of Streptomyces. FEMS Microbiol. Rev. 34, 171–198 (2010).
      Niu, G., Chater, K. F., Tian, Y., Zhang, J. & Tan, H. Specialised metabolites regulating antibiotic biosynthesis in Streptomyces spp. FEMS Microbiol. Rev. 40, 554–573 (2016). (PMID: 10.1093/femsre/fuw012)
      Andres, N., Wolf, H. & Zahner, H. Hormaomycin, a new peptide lactone antibiotic effective in inducing cytodifferentiation and antibiotic biosynthesis in some Streptomyces species. Z Naturforsch C 45, 850–855 (1990). (PMID: 10.1515/znc-1990-7-817)
      Onaka, H., Tabata, H., Igarashi, Y., Sato, Y. & Furumai, T. Goadsporin, a chemical substance which promotes secondary metabolism and morphogenesis in Streptomycetes I. purification and characterization. J. Antibiot. 54, 1036–1044 (2001). (PMID: 10.7164/antibiotics.54.1036)
      Amano, S. et al. Promomycin, a polyether promoting antibiotic production in Streptomyces spp. J. Antibiot. 63, 486–491 (2010). (PMID: 10.1038/ja.2010.68)
      Craney, A., Ozimok, C., Pimentel-Elardo, S., Capretta, A. & Nodwell, J. Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism. Chem. Biol. 19, 1020–1027 (2012). (PMID: 10.1016/j.chembiol.2012.06.013)
      Kawai, K., Wang, G., Okamoto, S. & Ochi, K. The rare earth, scandium, causes antibiotic overproduction in Streptomyces spp. FEMS Microbiol. Lett. 274, 311–315 (2007). (PMID: 10.1111/j.1574-6968.2007.00846.x)
      Onaka, H., Mori, Y., Igarashi, Y. & Furumai, T. Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl. Environ. Microbiol. 77, 400–406 (2011). (PMID: 10.1128/AEM.01337-10)
      Osada, H., Koshino, H., Isono, K., Takahashi, H. & Kawanishi, G. Reveromycin A, a new antibiotic which inhibits the mitogenic activity of epidermal growth factor. J. Antibiot. 44, 259–261 (1991). (PMID: 10.7164/antibiotics.44.259)
      Woo, J.-T. et al. Reveromycin A, an agent for osteoporosis, inhibits bone resorption by inducing apoptosis specifically in osteoclasts. Proc. Natl. Acad. Sci. USA. 103, 4729–4734 (2006). (PMID: 10.1073/pnas.050566310316537392)
      Takahashi, S. et al. Reveromycin A biosynthesis uses RevG and RevJ for stereospecific spiroacetal formation. Nat. Chem. Biol. 7, 461–468 (2011). (PMID: 10.1038/nchembio.583)
      De Schrijver, A. & De Mot, R. A subfamily of MalT-related ATP-dependent regulators in the LuxR family. Microbiology 145, 1287–1288 (1999). (PMID: 10.1099/13500872-145-6-1287)
      Kato, N., Takahashi, S., Nogawa, T., Saito, T. & Osada, H. Construction of a microbial natural product library for chemical biology studies. Curr. Opin. Chem. Biol. 16, 101–108 (2012). (PMID: 10.1016/j.cbpa.2012.02.016)
      Osada, H. & Nogawa, T. Systematic isolation of microbial metabolites for natural products depository (NPDepo). Pure Appl. Chem. 84, 1407–1420 (2012). (PMID: 10.1351/PAC-CON-11-08-11)
      Panthee, S., Takahashi, S., Hayashi, T., Shimizu, T. & Osada, H. β-carboline biomediators induce reveromycin production in Streptomyces sp. SN-593. Sci. Rep. 9, 5802 (2019). (PMID: 10.1038/s41598-019-42268-w)
      Hawver, L. A., Jung, S. A. & Ng, W. L. Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiol. Rev. 40, 738–752 (2016). (PMID: 10.1093/femsre/fuw014273543485007282)
      Papenfort, K. & Bassler, B. L. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14, 576–588 (2016). (PMID: 10.1038/nrmicro.2016.89275108645056591)
      Kawatani, M. et al. The identification of an osteoclastogenesis inhibitor through the inhibition of glyoxalase I. Proc. Natl. Acad. Sci. USA. 105, 11691–11696 (2008). (PMID: 10.1073/pnas.0712239105)
      Kanoh, N., Honda, K., Simizu, S., Muroi, M. & Osada, H. Photo-cross-linked small-molecule affinity matrix for facilitating forward and reverse chemical genetics. Angew. Chem. Int. Ed. Engl 44, 3559–3562 (2005). (PMID: 10.1002/anie.200462370)
      Lechner, A., Eustáquio, A. S., Gulder, T. A. M., Hafner, M. & Moore, B. S. Selective overproduction of the proteasome inhibitor salinosporamide A via precursor pathway regulation. Chem. Biol. 18, 1527–1536 (2011). (PMID: 10.1016/j.chembiol.2011.10.014)
      Zhang, L. H. et al. Characterization of giant modular PKSs provides insight into genetic mechanism for structural diversification of aminopolyol polyketides. Angew. Chem. Int. Ed. Engl. 56, 1740–1745 (2017). (PMID: 10.1002/anie.201611371)
      Laureti, L. et al. Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc. Natl. Acad. Sci. USA. 108, 6258–6263 (2011). (PMID: 10.1073/pnas.1019077108)
      Churchill, M. E. A. & Chen, L. Structural basis of acyl-homoserine lactone-dependent signaling. Chem. Rev. 111, 68–85 (2010). (PMID: 10.1021/cr1000817)
      Peters, N. K., Frost, J. W. & Long, S. R. A plant flavone, luteolin, induces expression of Rhizobium-meliloti nodulation genes. Science 233, 977–980 (1986). (PMID: 10.1126/science.3738520)
      Dakora, F. D. & Phillips, D. A. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245, 35–47 (2002). (PMID: 10.1023/A:1020809400075)
      Jones, D. L., Nguyen, C. & Finlay, R. D. Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321, 5–33 (2009). (PMID: 10.1007/s11104-009-9925-0)
      Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant. Biol. 64, 807–838 (2013). (PMID: 10.1146/annurev-arplant-050312-120106)
      Huang, H. B. et al. Antimalarial beta-carboline and indolactam alkaloids from marinactinospora thermotolerans, a deep sea isolate. J. Nat. Prod. 74, 2122–2127 (2011). (PMID: 10.1021/np200399t)
      Aroonsri, A., Kitani, S., Ikeda, H. & Nihira, T. Kitasetaline, a novel β-carboline alkaloid from Kitasatospora setae NBRC 14216 T. J. Biosci. Bioeng. 114, 56–58 (2012). (PMID: 10.1016/j.jbiosc.2012.02.027)
      Chen, Q. et al. Discovery of McbB, an enzyme catalyzing the β-carboline skeleton construction in the marinacarboline biosynthetic pathway. Angew. Chem. Int. Ed. Engl. 52, 9980–9984 (2013). (PMID: 10.1002/anie.201303449)
      Lyu, A. et al. Reveromycins A and B from Streptomyces sp 3–10: antifungal activity against plant pathogenic fungi In vitro and in a strawberry food model system. Front. Microbiol. 8 (2017).
      Komatsu, M., Uchiyama, T., Omura, S., Cane, D. E. & Ikeda, H. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc. Natl. Acad. Sci. USA. 107, 2646–2651 (2010). (PMID: 10.1073/pnas.0914833107)
      Takahashi, S. et al. Biochemical characterization of a novel indole prenyltransferase from Streptomyces sp. SN-593. J. Bacteriol. 192, 2839–2851 (2010). (PMID: 10.1128/JB.01557-09)
      Sambrook, J. & Russell, D. W. Molecular Cloning: a Laboratory Manual. 3rd ed, (Cold Spring Harbor Laboratory Press, 2001).
      Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA. 97, 6640–6645 (2000). (PMID: 10.1073/pnas.120163297)
      Panthee, S. et al. Furaquinocins I and J: novel polyketide isoprenoid hybrid compounds from Streptomyces reveromyceticus SN-593. J. Antibiot. 64, 509–513 (2011). (PMID: 10.1038/ja.2011.41)
      Miyazawa, T. et al. Identification of middle chain fatty acyl-CoA ligase responsible for the biosynthesis of 2-alkylmalonyl-CoAs for polyketide extender unit. J. Biol. Chem. 290, 26994–27011 (2015). (PMID: 10.1074/jbc.M115.677195)
      Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. Practical Streptomyces Genetics. (The John Innes Foundation, 2000).
    • الرقم المعرف:
      0 (Bacterial Proteins)
      0 (Carbolines)
      0 (Pyrans)
      0 (Repressor Proteins)
      0 (Spiro Compounds)
      0 (Trans-Activators)
      115038-68-1 (LuxR autoinducer binding proteins)
      134615-37-5 (reveromycin A)
    • الموضوع:
      Date Created: 20200625 Date Completed: 20201207 Latest Revision: 20210623
    • الموضوع:
      20240829
    • الرقم المعرف:
      PMC7311520
    • الرقم المعرف:
      10.1038/s41598-020-66974-y
    • الرقم المعرف:
      32576869