Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Androgens stimulate erythropoiesis through the DNA-binding activity of the androgen receptor in non-hematopoietic cells.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Blackwell Country of Publication: England NLM ID: 8703985 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1600-0609 (Electronic) Linking ISSN: 09024441 NLM ISO Abbreviation: Eur J Haematol Subsets: MEDLINE
    • بيانات النشر:
      Publication: <2005->: Oxford : Blackwell
      Original Publication: Copenhagen : Munksgaard, c1987-
    • الموضوع:
    • نبذة مختصرة :
      Background: Androgens function through DNA and non-DNA binding-dependent signalling of the androgen receptor (AR). How androgens promote erythropoiesis is not fully understood.
      Design and Methods: To identify the androgen signalling pathway, we treated male mice lacking the second zinc finger of the DNA-binding domain of the AR (AR ΔZF2 ) with non-aromatizable 5α-dihydrotestosterone (5α-DHT) or aromatizable testosterone. To distinguish direct hematopoietic and non-hematopoietic mechanisms, we performed bone marrow reconstitution experiments.
      Results: In wild-type mice, 5α-DHT had greater erythroid activity than testosterone, which can be aromatized to estradiol. The erythroid response in wild-type mice following 5α-DHT treatment was associated with increased serum erythropoietin (EPO) and its downstream target erythroferrone, and hepcidin suppression. 5α-DHT had no erythroid activity in AR ΔZF2 mice, proving the importance of DNA binding by the AR. Paradoxically, testosterone, but not 5α-DHT, suppressed EPO levels in AR ΔZF2 mice, suggesting testosterone following aromatization may oppose the erythroid-stimulating effects of androgens. Female wild-type mice reconstituted with AR ΔZF2 bone marrow cells remained responsive to 5α-DHT. In contrast, AR ΔZF2 mice reconstituted with female wild-type bone marrow cells showed no response to 5α-DHT.
      Conclusion: Erythroid promoting effects of androgens are mediated through DNA binding-dependent actions of the AR in non-hematopoietic cells, including stimulating EPO expression.
      (© 2020 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.)
    • References:
      Mooradian AD, Morley JE, Korenman SG. Biological actions of androgens. Endocr Rev. 1987;8(1):1-28.
      MacLean HE, Warne GL, Zajac JD. Localization of functional domains in the androgen receptor. J Steroid Biochem Mol Biol. 1997;62(4):233-242.
      Jin Y, Penning TM. Steroid 5alpha-reductases and 3alpha-hydroxysteroid dehydrogenases: key enzymes in androgen metabolism. Best Pract Res Clin Endocrinol Metab. 2001;15(1):79-94.
      Jones ME, Boon WC, Proietto J, Simpson ER. Of mice and men: the evolving phenotype of aromatase deficiency. Trends Endocrinol Metab. 2006;17(2):55-64.
      Ntais C, Polycarpou A, Tsatsoulis A. Molecular epidemiology of prostate cancer: androgens and polymorphisms in androgen-related genes. Eur J Endocrinol. 2003;149(6):469-477.
      Brinkmann AO, Blok LJ, de Ruiter PE, et al. Mechanisms of androgen receptor activation and function. J Steroid Biochem Mol Biol. 1999;69(1-6):307-313.
      Peterziel H, Mink S, Schonert A, Becker M, Klocker H, Cato AC. Rapid signalling by androgen receptor in prostate cancer cells. Oncogene. 1999;18(46):6322-6329.
      Unni E, Sun S, Nan B, et al. Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence. Cancer Res. 2004;64(19):7156-7168.
      Schneikert J, Peterziel H, Defossez PA, Klocker H, de Launoit Y, Cato AC. Androgen receptor-Ets protein interaction is a novel mechanism for steroid hormone-mediated down-modulation of matrix metalloproteinase expression. J Biol Chem. 1996;271(39):23907-23913.
      Coviello AD, Kaplan B, Lakshman KM, Chen T, Singh AB, Bhasin S. Effects of graded doses of testosterone on erythropoiesis in healthy young and older men. J Clin Endocrinol Metab. 2008;93(3):914-919.
      Bhasin S, Woodhouse L, Casaburi R, et al. Testosterone dose-response relationships in healthy young men. Am J Physiol Endocrinol Metab. 2001;281(6):E1172-E1181.
      Wang C, Swerdloff RS, Iranmanesh A, et al. Transdermal testosterone gel improves sexual function, mood, muscle strength, and body composition parameters in hypogonadal men. J Clin Endocrinol Metab. 2000;85(8):2839-2853.
      Snyder PJ. Hypogonadism in elderly men-what to do until the evidence comes. N Engl J Med. 2004;350(5):440-442.
      Navarro JF, Mora C, Macia M, Garcia J. Randomized prospective comparison between erythropoietin and androgens in CAPD patients. Kidney Int. 2002;61(4):1537-1544.
      Fonseca R, Rajkumar SV, White WL, Tefferi A, Hoagland HC. Anemia after orchiectomy. Am J Hematol. 1998;59(3):230-233.
      Weber JP, Walsh PC, Peters CA, Spivak JL. Effect of reversible androgen deprivation on hemoglobin and serum immunoreactive erythropoietin in men. Am J Hematol. 1991;36(3):190-194.
      Choo R, Chander S, Danjoux C, et al. How are hemoglobin levels affected by androgen deprivation in non-metastatic prostate cancer patients? Can J Urol. 2005;12(1):2547-2552.
      Voegeli TA, Kurtz A, Grimm MO, Effert P, Eckardt KU. Anemia under androgen deprivation: influence of flutamide, cyproteroneacetate and orchiectomy on the erythropoietin system. Horm Metab Res. 2005;37(2):89-93.
      Guo W, Bachman E, Li M, et al. Testosterone administration inhibits hepcidin transcription and is associated with increased iron incorporation into red blood cells. Aging Cell. 2013;12(2):280-291.
      Claustres M, Sultan C. Androgen and erythropoiesis: evidence for an androgen receptor in erythroblasts from human bone marrow cultures. Horm Res. 1988;29(1):17-22.
      Kim SW, Hwang JH, Cheon JM, et al. Direct and indirect effects of androgens on survival of hematopoietic progenitor cells in vitro. J Korean Med Sci. 2005;20(3):409-416.
      Leberbauer C, Boulme F, Unfried G, Huber J, Beug H, Mullner EW. Different steroids co-regulate long-term expansion versus terminal differentiation in primary human erythroid progenitors. Blood. 2005;105(1):85-94.
      Goodnough JB, Ramos E, Nemeth E, Ganz T. Inhibition of hepcidin transcription by growth factors. Hepatology. 2012;56(1):291-299.
      Latour C, Kautz L, Besson-Fournier C, et al. Testosterone perturbs systemic iron balance through activation of epidermal growth factor receptor signaling in the liver and repression of hepcidin. Hepatology. 2014;59(2):683-694.
      Notini AJ, Davey RA, McManus JF, Bate KL, Zajac JD. Genomic actions of the androgen receptor are required for normal male sexual differentiation in a mouse model. J Mol Endocrinol. 2005;35(3):547-555.
      Pang TP, Clarke MV, Ghasem-Zadeh A, Lee NK, Davey RA, MacLean HE. A physiological role for androgen actions in the absence of androgen receptor DNA binding activity. Mol Cell Endocrinol. 2012;348(1):189-197.
      Axell AM, MacLean HE, Plant DR, et al. Continuous testosterone administration prevents skeletal muscle atrophy and enhances resistance to fatigue in orchidectomized male mice. Am J Physiol Endocrinol Metab. 2006;291(3):E506-E516.
      Guo W, Schmidt PJ, Fleming MD, Bhasin S. Hepcidin is not essential for mediating testosterone's effects on erythropoiesis. Andrology. 2019;8(1):82-90.
      Chuang KH, Altuwaijri S, Li G, et al. Neutropenia with impaired host defense against microbial infection in mice lacking androgen receptor. J Exp Med. 2009;206(5):1181-1199.
      Olsen NJ, Gu X, Kovacs WJ. Bone marrow stromal cells mediate androgenic suppression of B lymphocyte development. J Clin Invest. 2001;108(11):1697-1704.
      Hall MA, Slater NJ, Begley CG, et al. Functional but abnormal adult erythropoiesis in the absence of the stem cell leukemia gene. Mol Cell Biol. 2005;25(15):6355-6362.
      Courselaud B, Troadec MB, Fruchon S, et al. Strain and gender modulate hepatic hepcidin 1 and 2 mRNA expression in mice. Blood Cells Mol Dis. 2004;32(2):283-289.
      Krijt J, Cmejla R, Sykora V, Vokurka M, Vyoral D, Necas E. Different expression pattern of hepcidin genes in the liver and pancreas of C57BL/6N and DBA/2N mice. J Hepatol. 2004;40(6):891-896.
      Mantalaris A, Panoskaltsis N, Sakai Y, et al. Localization of androgen receptor expression in human bone marrow. J Pathol. 2001;193(3):361-366.
      Quigley CA, Evans BA, Simental JA, et al. Complete androgen insensitivity due to deletion of exon C of the androgen receptor gene highlights the functional importance of the second zinc finger of the androgen receptor in vivo. Mol Endocrinol. 1992;6(7):1103-1112.
      Deshpande H, Chaudhari S, Sharma S. Complete androgen insensitivity syndrome. J Obstet Gynaecol India. 2012;62(Suppl 1):75-77.
      Mukundan H, Kanagy NL, Resta TC. 17-beta estradiol attenuates hypoxic induction of HIF-1alpha and erythropoietin in Hep3B cells. J Cardiovasc Pharmacol. 2004;44(1):93-100.
      Bachman E, Travison TG, Basaria S, et al. Testosterone induces erythrocytosis via increased erythropoietin and suppressed hepcidin: evidence for a new erythropoietin/hemoglobin set point. J Gerontol A Biol Sci Med Sci. 2014;69(6):725-735.
    • Grant Information:
      National Health and Medical Research Council; Medical Research Future Fund; The Eva and Les Erdi Major Research Grants; Sir Edward Dunlop Medical Research Foundation Grants; The Austin Medical Research Fund; Leukaemia Foundation; Merck & Co.; Australian Cancer Research Foundation; The University of Melbourne MRGS
    • Contributed Indexing:
      Keywords: DNA-binding actions; androgen receptor signalling; androgens; erythropoiesis; erythropoietin; genetically modified androgen receptor mouse model; non-hematopoietic cells
    • الرقم المعرف:
      0 (Androgens)
      0 (Biomarkers)
      0 (DNA-Binding Proteins)
      0 (EPO protein, human)
      0 (Receptors, Androgen)
      11096-26-7 (Erythropoietin)
      E1UOL152H7 (Iron)
    • الموضوع:
      Date Created: 20200421 Date Completed: 20210616 Latest Revision: 20210616
    • الموضوع:
      20221213
    • الرقم المعرف:
      10.1111/ejh.13431
    • الرقم المعرف:
      32311143