Item request has been placed!
×
Item request cannot be made.
×
Processing Request
A First Comprehensive Baseline of Hydrocarbon Pollution in Gulf of Mexico Fishes.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Pulster EL;Pulster EL; Gracia A; Gracia A; Armenteros M; Armenteros M; Armenteros M; Toro-Farmer G; Toro-Farmer G; Snyder SM; Snyder SM; Carr BE; Carr BE; Schwaab MR; Schwaab MR; Nicholson TJ; Nicholson TJ; Mrowicki J; Mrowicki J; Murawski SA; Murawski SA
- المصدر:
Scientific reports [Sci Rep] 2020 Apr 15; Vol. 10 (1), pp. 6437. Date of Electronic Publication: 2020 Apr 15.- نوع النشر :
Journal Article; Research Support, Non-U.S. Gov't- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
- بيانات النشر: Original Publication: London : Nature Publishing Group, copyright 2011-
- الموضوع: Biliary Tract/*chemistry ; Fishes/*metabolism ; Polycyclic Aromatic Hydrocarbons/*analysis ; Water Pollutants, Chemical/*analysis ; Water Pollution, Chemical/*statistics & numerical data; Animals ; Biliary Tract/metabolism ; Cuba ; Environmental Monitoring/statistics & numerical data ; Female ; Florida ; Geologic Sediments/chemistry ; Gulf of Mexico ; Male ; Mexico ; Petroleum Pollution/adverse effects ; Polycyclic Aromatic Hydrocarbons/metabolism ; Seawater/chemistry
- نبذة مختصرة : Despite over seven decades of production and hundreds of oil spills per year, there were no comprehensive baselines for petroleum contamination in the Gulf of Mexico (GoM) prior to this study. Subsequent to the 2010 Deepwater Horizon (DWH) spill, we implemented Gulf-wide fish surveys extending over seven years (2011-2018). A total of 2,503 fishes, comprised of 91 species, were sampled from 359 locations and evaluated for biliary polycyclic aromatic hydrocarbon (PAH) concentrations. The northern GoM had significantly higher total biliary PAH concentrations than the West Florida Shelf, and coastal regions off Mexico and Cuba. The highest concentrations of biliary PAH metabolites occurred in Yellowfin Tuna (Thunnus albacares), Golden Tilefish (Lopholatilus chamaeleonticeps), and Red Drum (Sciaenops ocellatus). Conversely, biliary PAH concentrations were relatively low for most other species including economically important snappers and groupers. While oil contamination in most demersal species in the north central GoM declined in the first few years following DWH, more recent increases in exposure to PAHs in some species suggest a complex interaction between multiple input sources and possible re-suspension or bioturbation of oil-contaminated sediments. This study provides the most comprehensive baselines of PAH exposure in fishes ever conducted for a large marine ecosystem.
- References: Ward, C. H. & Tunnell Jr., J. W. In Habitats and Biota of the Gulf of Mexico: Before the Deepwater Horizon Oil Spill Vol. I (ed. Herb Ward, C.) Ch. 1, (Springer Nature, 2017).
NRC. Oil in the Sea III: Inputs, Fates, and Effects. (The National Academies Press, 2003).
Pulster, E. L. et al. In Scenarios and Responses to Future Deep Oil Spills: Fighting the Next War (eds. Steven A. Murawski et al.) Ch. 15, (Springer Nature, 2020).
Amezcua-Linares, F., Amezcua, F. & Gil-Manrique, B. In Impacts of Oil Spill Disasters on Marine Habitats and Fisheries in North America CRC Marine Biology Series (eds. Alford, J. B., Peterson, M. S., & Green, C. C.) 209–236 (2015).
Shigenaka, G. Twenty-five years after the Exxon Valdez Oil Spill: NOAA’s Scientific Support, Monitoring, and Research., 78 (NOAA Office of Response and Restoration, Seattle, WA, 2014).
NAS. An ecosystem services approach to assessing the impacts of the Deepwater Horizon oil spill in the Gulf of Mexico. (National Academies Press, Washington, DC, 2013).
Murawski, S. A. & Hogarth, W. T. Enhancing the ocean observing system to meet restoration challenges in the Gulf of Mexico. Oceanography 26, 10–16 (2013). (PMID: 10.5670/oceanog.2013.12)
NOAA-ORR. Largest Oil Spills Affecting U.S. Waters Since 1969, 2019).
Lubchenco, J. et al. Science in support of the Deepwater Horizon response. Proceedings of the National Academy of Sciences of the United States of America 109, 20212–20221, https://doi.org/10.1073/pnas.1204729109 (2012). (PMID: 10.1073/pnas.1204729109232132503528512)
Soto, L. A., Botello, A. V., Licea-Durán, S., Lizárraga-Partida, M. L. & Yáñez-Arancibia, A. The environmental legacy of the Ixtoc-I oil spill in Campeche Sound, southwestern Gulf of Mexico. Frontiers in Marine Science 1, https://doi.org/10.3389/fmars.2014.00057 (2014).
Wiens, J. A., Day, R. H., Murphy, S. M. & Parker, K. R. On Drawing Conclusions Nine Years After the Exxon Valdez Oil Spill. The Condor: Ornithological Applications 103, 886–892, https://doi.org/10.1650/0010-5422(2001)103[0886:Odcnya]2.0.Co;2 (2001).
Wiens, J. A. & Parker, K. R. Analyzing the Effects of Accidental Environmental Impacts: Approaches and Assumptions. Ecol. Appl. 5, 1069–1083, https://doi.org/10.2307/2269355 (1995). (PMID: 10.2307/2269355)
Parker, K. R. & Wiens, J. A. Assessing recovery following environmental accidents: Environmental variation, ecological assumptions, and strategies. Ecol. Appl. 15, 2037–2051, https://doi.org/10.1890/04-1723 (2005). (PMID: 10.1890/04-1723)
Kennicutt, M. C., Brooks, J. M., Atlas, E. L. & Giam, C. S. Organic compounds of environmental concern in the Gulf of Mexico: a review. Aquatic Toxicology 11, 191–212, https://doi.org/10.1016/0166-445x(88)90013-6 (1988). (PMID: 10.1016/0166-445x(88)90013-6)
Dincer Kırman, Z. et al. Composition and depth distribution of hydrocarbons in Barataria Bay marsh sediments after the Deepwater Horizon oil spill. Environmental Pollution 214, 101–113, https://doi.org/10.1016/j.envpol.2016.03.071 (2016). (PMID: 10.1016/j.envpol.2016.03.07127064616)
DeLaune, R. D., Patrick, W. H. Jr. & Buresh, R. J. Effect of crude oil on a Louisiana Spartina alterniflora salt marsh. Environmental Pollution (1970) 20, 21–31, https://doi.org/10.1016/0013-9327(79)90050-8 (1979). (PMID: 10.1016/0013-9327(79)90050-8)
Hester, M. W. & Mendelssohn, I. A. Long-term recovery of a Louisiana brackish marsh plant community from oil-spill impact: Vegetation response and mitigating effects of marsh surface elevation. Marine Environmental Research 49, 233–254, https://doi.org/10.1016/S0141-1136(99)00071-9 (2000). (PMID: 10.1016/S0141-1136(99)00071-911285728)
Deep Oil Spills. (Springer Nature 2020).
Turner, R. E. et al. Oiling of the continental shelf and coastal marshes over eight years after the 2010 Deepwater Horizon oil spill. Environmental Pollution 252, 1367–1376, https://doi.org/10.1016/j.envpol.2019.05.134 (2019). (PMID: 10.1016/j.envpol.2019.05.13431254894)
McClain, C. R., Nunnally, C. & Benfield, M. C. Persistent and substantial impacts of the Deepwater Horizon oil spill on deep-sea megafauna. R. Soc. Open Sci. 6, 9, https://doi.org/10.1098/rsos.191164 (2019). (PMID: 10.1098/rsos.191164)
Pulster, E. L. et al. In Deep Oil Spills: Facts, Fate and Effects (eds. Steven A. Murawski et al.) Ch. 24, (Springer Nature, 2020).
Lee, R. F., Sauerheb, R. & Dobbs, G. H. Uptake, metaolism and discharge of polycyclic aromatic hydrocarbons by marine fish. Marine Biology 17, 201–&, https://doi.org/10.1007/bf00366294 (1972). (PMID: 10.1007/bf00366294)
Lech, J. J. & Vodicnik, M. J. In Fundamentals of Aquatic Toxicology: Methods and Applications (eds. Rand, G. M. & Petrocelli, S.R.) 526–557 (Hemisphere, 1985).
Dipple, A. Polycyclic Aromatic Hydrocarbon Carcinogenesis - An Introduction. Acs Symposium Series 283, 1–17 (1985). (PMID: 10.1021/bk-1985-0283.ch001)
Krahn, M. M., Myers, M. S., Burrows, D. G. & Malins, D. C. Determination of metabolites of xenobiotics in the bile of fish from polluted waterways. Xenobiotica 14, 633–646, https://doi.org/10.3109/00498258409151461 (1984). (PMID: 10.3109/004982584091514616495757)
Krahn, M. M. et al. Associations between metabolites of aromatic compounds in bile and the occurrence of hepatic lesions in English sole (Parophrys vetulus) from Puget Sound, Washington. Archives of Environmental Contamination and Toxicology 15, 61–67, https://doi.org/10.1007/bf01055249 (1986). (PMID: 10.1007/bf010552493947138)
Beyer, J., Jonsson, G., Porte, C., Krahn, M. M. & Ariese, F. Analytical methods for determining metabolites of polycyclic aromatic hydrocarbon (PAH) pollutants in fish bile: A review. Environmental Toxicology and Pharmacology 30, 224–244, https://doi.org/10.1016/j.etap.2010.08.004 (2010). (PMID: 10.1016/j.etap.2010.08.00421787655)
Snyder, S. M., Pulster, E. L., Wetzel, D. L. & Murawski, S. A. PAH Exposure in Gulf of Mexico Demersal Fishes, Post-Deepwater Horizon. Environmental Science &. Technology 49, 8786–8795, https://doi.org/10.1021/acs.est.5b01870 (2015). (PMID: 10.1021/acs.est.5b01870)
Murawski, S. A., Peebles, E. B., Gracia, A., Tunnell, J. W. & Armenteros, M. Comparative Abundance, Species Composition, and Demographics of Continental Shelf Fish Assemblages throughout the Gulf of Mexico. Marine and Coastal Fisheries 10, 325–346, https://doi.org/10.1002/mcf2.10033 (2018). (PMID: 10.1002/mcf2.10033)
Herdter, E. S., Chambers, D. P., Stallings, C. D. & Murawski, S. A. Did the Deepwater Horizon oil spill affect growth of Red Snapper in the Gulf of Mexico? Fisheries Research 191, 60–68, https://doi.org/10.1016/j.fishres.2017.03.005 (2017). (PMID: 10.1016/j.fishres.2017.03.005)
Murawski, S. A., Hogarth, W. T., Peebles, E. B. & Barbeiri, L. Prevalence of External Skin Lesions and Polycyclic Aromatic Hydrocarbon Concentrations in Gulf of Mexico Fishes, Post-Deepwater Horizon. Transactions of the American Fisheries Society 143, 1084–1097, https://doi.org/10.1080/00028487.2014.911205 (2014). (PMID: 10.1080/00028487.2014.911205)
Granneman, J. E., Jones, D. L. & Peebles, E. B. Associations between metal exposure and lesion formation in offshore Gulf of Mexico fishes collected after the Deepwater Horizon oil spill. Marine Pollution Bulletin 117, 462–477, https://doi.org/10.1016/j.marpolbul.2017.01.066 (2017). (PMID: 10.1016/j.marpolbul.2017.01.06628214010)
Deak, K., Dishaw, L. & Murawski, S. A. In American Fisheries Society.
Harr, K. E., Deak, K., Murawski, S. A., Reavill, D. R. & Takeshita, R. A. Generation of red drum (Sciaenops ocellatus) hematology Reference Intervals with a focus on identified outliers. Veterinary Clinical Pathology 47, 22–28, https://doi.org/10.1111/vcp.12569 (2018). (PMID: 10.1111/vcp.1256929341194)
Snyder, S. M., Pulster, E. L. & Murawski, S. A. Associations between chronic exposure to polycyclic aromatic hydrocarbons and health indices in Gulf of Mexico Tilefish (Lopholatilus chamaeleonticeps) post-Deepwater Horizon. Environmental Toxicology and Chemistry In Press (2019).
Struch, R., Pulster, E. L., Schreier, A. M. & Murawski, S. A. Hepatobiliary Analyses Suggest Chronic PAH Exposure in Hakes (Urophycis spp.) Following the Deepwater Horizon Oil Spill. Environmental Toxicology and Chemistry In Press (2019).
Carvalho, G. D. A., Minnett, P. J., Miranda, F. P. D., Landau, L. & Moreira, F. The Use of a RADARSAT-Derived Long-Term Dataset to Investigate the Sea Surface Expressions of Human-Related Oil Spills and Naturally Occurring Oil Seeps in Campeche Bay, Gulf of Mexico. Canadian Journal of Remote Sensing 42, 307–321, https://doi.org/10.1080/07038992.2016.1173532 (2016). (PMID: 10.1080/07038992.2016.1173532)
Ojeda, E., Appendini, C. M. & Mendoza, E. T. Storm-wave trends in Mexican waters of the Gulf of Mexico and Caribbean Sea. Nat. Hazards Earth Syst. Sci. 17, 1305–1317, https://doi.org/10.5194/nhess-17-1305-2017 (2017). (PMID: 10.5194/nhess-17-1305-2017)
Davis Jr., R. A. In Habitats and Biota of the Gulf of Mexico: Before the Deepwater Horizon Oil Spill Vol. 1 (ed. Herb Ward, C.) Ch. 3, 165–215 (Springer Open, 2017).
Burgess, R. M., Ahrens, M. J. & Hickey, C. W. In PAHs: An Ecotoxicological Perspective (ed. Peter E. T. Douben) (John Wiley & Sons, Ltd., 2003).
Diercks, A. R. et al. Scales of seafloor sediment resuspension in the northern Gulf of Mexico. Elementa-Science of the Anthropocene 6, https://doi.org/10.1525/elementa.285 (2018).
Sun, S. et al. Remote sensing assessment of oil spills near a damaged platform in the Gulf of Mexico. Marine Pollution Bulletin 136, 141–151, https://doi.org/10.1016/j.marpolbul.2018.09.004 (2018). (PMID: 10.1016/j.marpolbul.2018.09.00430509795)
Botello, A. V., Villanueva F., S. & Diaz G., G. Petroleum Pollution in the Gulf of Mexico and Caribbean Sea. Reviews of Environmental Contamination and Toxicology 153, 91–118 (1997). (PMID: 10.1007/978-1-4612-2302-3_3)
MacDonald, I. R. et al. Natural and unnatural oil slicks in the Gulf of Mexico. Journal of Geophysical Research-Oceans 120, 8364–8380, https://doi.org/10.1002/2015jc011062 (2015). (PMID: 10.1002/2015jc011062277743705064732)
Dalsoren, S. B. et al. Update on emissions and environmental impacts from the international fleet of ships: the contribution from major ship types and ports. Atmos. Chem. Phys. 9, 2171–2194, https://doi.org/10.5194/acp-9-2171-2009 (2009). (PMID: 10.5194/acp-9-2171-2009)
Kennicutt II, M. C. In Habitats and Biota of the Gulf of Mexico: Before the Deepwater Horizon Oil Spill Vol. 1 (ed Herb Ward, C.) Ch. 5, 275–358 (Springer Open, 2017).
Taniguchi, M., Burnett, W. C., Cable, J. E. & Turner, J. V. Investigation of submarine groundwater discharge. Hydrological Processes 16, 2115–2129, https://doi.org/10.1002/hyp.1145 (2002). (PMID: 10.1002/hyp.1145)
Perez-Umphrey, A. A., Bergeon Burns, C. M., Stouffer, P. C., Woltmann, S. & Taylor, S. S. Polycyclic aromatic hydrocarbon exposure in seaside sparrows (Ammodramus maritimus) following the 2010 Deepwater Horizon oil spill. Science of The Total Environment 630, 1086–1094, https://doi.org/10.1016/j.scitotenv.2018.02.281 (2018). (PMID: 10.1016/j.scitotenv.2018.02.28129554730)
Paruk, J. D. et al. Polycyclic aromatic hydrocarbons in blood related to lower body mass in common loons. Science of The Total Environment 565, 360–368, https://doi.org/10.1016/j.scitotenv.2016.04.150 (2016). (PMID: 10.1016/j.scitotenv.2016.04.15027177142)
Turner, R. E. et al. Distribution and recovery trajectory of Macondo (Mississippi Canyon 252) oil in Louisiana coastal wetlands. Marine Pollution Bulletin 87, 57–67, https://doi.org/10.1016/j.marpolbul.2014.08.011 (2014). (PMID: 10.1016/j.marpolbul.2014.08.01125176275)
Olson, G. M., Meyer, B. M. & Portier, R. J. Assessment of the toxic potential of polycyclic aromatic hydrocarbons (PAHs) affecting Gulf menhaden (Brevoortia patronus) harvested from waters impacted by the BP Deepwater Horizon Spill. Chemosphere 145, 322–328, doi:0.1016/j.chemosphere.2015.11.087 (2016).
Larson, R. A. et al. In Scenarios and Responses to Future Deep Oil Spills: Fighting the Next War (eds. Murawski, S. A. et al.) Ch. 14, (Springer Nature, 2019).
Brooks, G. R. et al. Sedimentation Pulse in the NE Gulf of Mexico following the 2010 DWH Blowout. PLOS One 10, e0132341, https://doi.org/10.1371/journal.pone.0132341 (2015). (PMID: 10.1371/journal.pone.0132341261726394501746)
Mason, A. L., Taylor, J. C. & MacDonald, I. R. An Integrated Assessment of Oil and Gas Release into the Marine Environment at the Former Taylor Energy MC20 Site. 147 (NOAA National Ocean Service, National Centers for Coastal Ocean Science, Silver Spring, MD, 2019).
Kolian, S. R. et al. Oil in the Gulf of Mexico after the capping of the BP/Deepwater Horizon Mississippi Canyon (MC-252) well. Environ Sci Pollut Res 22, 12073–12082, https://doi.org/10.1007/s11356-015-4421-y (2015). (PMID: 10.1007/s11356-015-4421-y)
Walker, C. J. Assessing the effects of pollutant exposure on sharks: A biomarker approach Master of Science in Biology thesis, University of North Florida, (2011).
de Albergaria-Barbosa, A. C. R. et al. Evaluation of polycyclic aromatic hydrocarbons bioavailability on Santos Bay (Brazil) through levels of biliary metabolites. Marine Pollution Bulletin 129, 822–828, https://doi.org/10.1016/j.marpolbul.2017.10.006 (2018). (PMID: 10.1016/j.marpolbul.2017.10.00629032809)
Pinkney, A. E., Harshbarger, J. C., May, E. B. & Melancon, M. J. Tumor Prevalence and Biomarkers of Exposure in Brown Bullhead (Ameiurus nebulosus) from Back River, Furnace Creek, and Tuckahoe River, Maryland. Archives of Environmental Contamination and Toxicology 46, 492–501, https://doi.org/10.1007/s00244-003-2252-1 (2004). (PMID: 10.1007/s00244-003-2252-115253047)
Krahn, M. M., Kittle, L. J. & MacLeod, W. D. Evidence for exposure of fish to oil spilled into the Columbia river. Marine Environmental Research 20, 291–298, https://doi.org/10.1016/0141-1136(86)90054-1 (1986). (PMID: 10.1016/0141-1136(86)90054-1)
Krahn, M. M. et al. Mass spectrometric analysis for aromatic compounds in bile of fish sampled after the Exxon Valdez oil spill. Environmental Science & Technology 26, 116–126, https://doi.org/10.1021/es00025a012 (1992). (PMID: 10.1021/es00025a012)
Weng, K. C. et al. Habitat and behaviour of yellowfin tuna Thunnus albacares in the Gulf of Mexico determined using pop-up satellite archival tags. Journal of Fish Biology 74, 1434–1449, https://doi.org/10.1111/j.1095-8649.2009.02209.x (2009). (PMID: 10.1111/j.1095-8649.2009.02209.x20735644)
Liu, Z., Liu, J., Gardner, W. S., Shank, G. C. & Ostrom, N. E. The impact of Deepwater Horizon oil spill on petroleum hydrocarbons in surface waters of the northern Gulf of Mexico. Deep Sea Research Part II: Topical Studies in Oceanography 129, 292–300, https://doi.org/10.1016/j.dsr2.2014.01.013 (2016). (PMID: 10.1016/j.dsr2.2014.01.013)
Liu, Z. F., Liu, J. Q., Zhu, Q. Z. & Wu, W. The weathering of oil after the Deepwater Horizon oil spill: insights from the chemical composition of the oil from the sea surface, salt marshes and sediments. Environmental Research Letters 7, 14, https://doi.org/10.1088/1748-9326/7/3/035302 (2012). (PMID: 10.1088/1748-9326/7/3/035302)
Gagnon, M. M. In Produced Water (eds Kenneth Lee & Jerry Neff) Ch. 15, 295–309 (Springer, 2011).
Randall, D. J., Brauner, C. J., Thurston, R. V. & Neuman, J. F. In Toxicology of Aquatic Pollution: Physiological, Cellular and Molecular Approaches (ed. Taylor, E. W.) 1–16 (Cambridge University Press, 1996).
Bernal, D., Dickson, K. A., Shadwick, R. E. & Graham, J. B. Review: Analysis of the evolutionary convergence for high performance swimming in lamnid sharks and tunas. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 129, 695–726, https://doi.org/10.1016/S1095-6433(01)00333-6 (2001). (PMID: 10.1016/S1095-6433(01)00333-6)
Varanasi, U., Gmur, D. J. & Reichert, W. L. Effect of environmental temperature on naphthalene metabolism by Juvenile Starry flounder (Platichthys stellatus). Archives of Environmental Contamination and Toxicology 10, 203–214, https://doi.org/10.1007/bf01055622 (1981). (PMID: 10.1007/bf010556227224672)
Varanasi, V., Stein, J. E. & Nishimoto, M. Biotransformation and disposition of polycyclic aromatic hydrocarbons (PAH) in fish. (1989).
Pulster, E. L., Main, K., Wetzel, D. & Murawski, S. Species-specific metabolism of naphthalene and phenanthrene in 3 species of marine teleosts exposed to Deepwater Horizon crude oil. Environmental Toxicology and Chemistry 36, 3168–3176, https://doi.org/10.1002/etc.3898 (2017). (PMID: 10.1002/etc.389828636160)
Brumley, C. M., Haritos, V. S., Ahokas, J. T. & Holdway, D. A. The Effects of Exposure Duration and Feeding Status on Fish Bile Metabolites: Implications for Biomonitoring. Ecotoxicology and Environmental Safety 39, 147–153, https://doi.org/10.1006/eesa.1997.1622 (1998). (PMID: 10.1006/eesa.1997.16229515087)
Madenjian, C. P. et al. Sex differences in contaminant concentrations of fish: a synthesis. Biology of Sex Differences 7, 16, https://doi.org/10.1186/s13293-016-0090-x (2016). (PMID: 10.1186/s13293-016-0090-x)
Wan, Y., Jin, X., Hu, J. & Jin, F. Trophic Dilution of Polycyclic Aromatic Hydrocarbons (PAHs) in a Marine Food Web from Bohai Bay, North China. Environmental Science & Technology 41, 3109–3114, https://doi.org/10.1021/es062594x (2007). (PMID: 10.1021/es062594x)
Takeuchi, I. et al. Biomagnification profiles of polycyclic aromatic hydrocarbons, alkylphenols and polychlorinated biphenyls in Tokyo Bay elucidated by δ13C and δ15N isotope ratios as guides to trophic web structure. Marine Pollution Bulletin 58, 663–671, https://doi.org/10.1016/j.marpolbul.2008.12.022 (2009). (PMID: 10.1016/j.marpolbul.2008.12.02219261300)
NCCOS. NOAA’s National Status and Trends Data, 2017).
Murawski, S. A. In Scenarios and Responses to Future Deep Oil Spills: Fighting the Next War (eds. Murawski, Steven A. et al.) Ch. 29, 513–530 (Springer Nature, 2020).
Krahn, M. M., Moore, L. K. & MacLeod, W. D. (NMFS, NOAA, Seattle, Washington, 1986).
Johnson, L. L. et al. (ed Environmental Conservation Division) (Northwest Fisheries Science Center, Seattle, Washington, 2009).
USEPA. (United States Environmental Protection Agency, Washington, D.C., 1984).
Gale, R. W., Tanner, M. J., Love, M. S., Nishimoto, M. M. & Schroeder, D. M. 27 (U.S. Geological Survey, 2012).
Gribov, A. & Krivoruchko, K. Local polynomials for data detrending and interpolation in the presence of barriers. Stochastic Environmental Research and Risk Assessment 25, 1057–1063, https://doi.org/10.1007/s00477-011-0488-2 (2011). (PMID: 10.1007/s00477-011-0488-2)
Jerrett, M. et al. A review and evaluation of intraurban air pollution exposure models. Journal of Exposure Science & Environmental Epidemiology 15, 185–204, https://doi.org/10.1038/sj.jea.7500388 (2005). (PMID: 10.1038/sj.jea.7500388)
Sprogis, K. R., Raudino, H. C., Rankin, R., MacLeod, C. D. & Bejder, L. Home range size of adult Indo-Pacific bottlenose dolphins (Tursiops aduncus) in a coastal and estuarine system is habitat and sex-specific. Marine Mammal Science 32, 287–308, https://doi.org/10.1111/mms.12260 (2016). (PMID: 10.1111/mms.12260)
Webster, R. & Oliver, M. A. Geostatistics for Environmenteal Scientists. (John Wiley & Sons, Ltd, 2007).
Jones, D. L. Fathom Toolbox for MATLAB: Software for multivariate ecological and oceanographic data analysis, www.marine.usf.edu/research/matlab-resources/ (2017).
Anderson, M. J., Walsh, D. C. I., Robert Clarke, K., Gorley, R. N. & Guerra-Castro, E. Some solutions to the multivariate Behrens–Fisher problem for dissimilarity-based analyses. Australian & New Zealand Journal of Statistics 59, 57–79, https://doi.org/10.1111/anzs.12176 (2017). (PMID: 10.1111/anzs.12176)
Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18, 117–143, https://doi.org/10.1111/j.1442-9993.1993.tb00438.x (1993). (PMID: 10.1111/j.1442-9993.1993.tb00438.x) - الرقم المعرف: 0 (Polycyclic Aromatic Hydrocarbons)
0 (Water Pollutants, Chemical) - الموضوع: Date Created: 20200417 Date Completed: 20201207 Latest Revision: 20210415
- الموضوع: 20240829
- الرقم المعرف: PMC7160155
- الرقم المعرف: 10.1038/s41598-020-62944-6
- الرقم المعرف: 32296072
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.