Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Proteomic mapping of Drosophila transgenic elav.L-GAL4/+ brain as a tool to illuminate neuropathology mechanisms.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Velentzas AD;Velentzas AD; Katarachia SA; Katarachia SA; Sagioglou NE; Sagioglou NE; Tsioka MM; Tsioka MM; Anagnostopoulos AK; Anagnostopoulos AK; Mpakou VE; Mpakou VE; Theotoki EI; Theotoki EI; Giannopoulou AF; Giannopoulou AF; Keramaris KE; Keramaris KE; Papassideri IS; Papassideri IS; Tsangaris GT; Tsangaris GT; Stravopodis DJ; Stravopodis DJ
- المصدر:
Scientific reports [Sci Rep] 2020 Mar 25; Vol. 10 (1), pp. 5430. Date of Electronic Publication: 2020 Mar 25.- نوع النشر :
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't- اللغة:
English - المصدر:
- معلومة اضافية
- المصدر: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
- بيانات النشر: Original Publication: London : Nature Publishing Group, copyright 2011-
- الموضوع: Proteolysis*; Brain/*metabolism ; Drosophila/*genetics ; Drosophila Proteins/*metabolism ; ELAV Proteins/*genetics ; Nervous System Diseases/*etiology ; Nervous System Diseases/*genetics ; Proteasome Endopeptidase Complex/*genetics ; Proteomics/*methods ; Transcription Factors/*genetics ; Ubiquitination/*genetics; Animals ; Animals, Genetically Modified ; Drosophila/physiology ; Drosophila Proteins/genetics ; Female ; Humans ; Locomotion/genetics ; Longevity/genetics ; Male ; RNA Interference ; Ubiquitin/metabolism
- نبذة مختصرة : Drosophila brain has emerged as a powerful model system for the investigation of genes being related to neurological pathologies. To map the proteomic landscape of fly brain, in a high-resolution scale, we herein employed a nano liquid chromatography-tandem mass spectrometry technology, and high-content catalogues of 7,663 unique peptides and 2,335 single proteins were generated. Protein-data processing, through UniProt, DAVID, KEGG and PANTHER bioinformatics subroutines, led to fly brain-protein classification, according to sub-cellular topology, molecular function, implication in signaling and contribution to neuronal diseases. Given the importance of Ubiquitin Proteasome System (UPS) in neuropathologies and by using the almost completely reassembled UPS, we genetically targeted genes encoding components of the ubiquitination-dependent protein-degradation machinery. This analysis showed that driving RNAi toward proteasome components and regulators, using the GAL4-elav.L driver, resulted in changes to longevity and climbing-activity patterns during aging. Our proteomic map is expected to advance the existing knowledge regarding brain biology in animal species of major translational-research value and economical interest.
- References: Bier, E. Drosophila, the golden bug, emerges as a tool for human genetics. Nat. Rev. Genet. 6, 9–23, https://doi.org/10.1038/nrg1503 (2005). (PMID: 10.1038/nrg150315630418)
Lloyd, T. E. & Taylor, J. P. Flightless flies: Drosophila models of neuromuscular disease. Ann. N. Y. Acad. Sci. 1184, e1–20 (2010). (PMID: 10.1111/j.1749-6632.2010.05432.x)
Bonini, N. M. & Fortini, M. E. Human neurodegenerative disease modeling using Drosophila. Annu. Rev. Neurosci. 26, 627–656, https://doi.org/10.1146/annurev.neuro.26.041002.131425 (2003). (PMID: 10.1146/annurev.neuro.26.041002.13142512704223)
Jaiswal, M., Sandoval, H., Zhang, K., Bayat, V. & Bellen, H. J. Probing mechanisms that underlie human neurodegenerative diseases in Drosophila. Annu. Rev. Genet. 46, 371–396, https://doi.org/10.1146/annurev-genet-110711-155456 (2012). (PMID: 10.1146/annurev-genet-110711-155456229743053663445)
Mutsuddi, M. & Nambu, J. R. Neural disease: Drosophila degenerates for a good cause. Curr. Biol. 8, R809–811 (1998). (PMID: 10.1016/S0960-9822(07)00506-4)
Oortveld, M. A. et al. Human intellectual disability genes form conserved functional modules in Drosophila. PLoS Genet. 9, e1003911, https://doi.org/10.1371/journal.pgen.1003911 (2013). (PMID: 10.1371/journal.pgen.1003911242043143814316)
Pandey, U. B. & Nichols, C. D. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev. 63, 411–436, https://doi.org/10.1124/pr.110.003293 (2011). (PMID: 10.1124/pr.110.003293214151263082451)
Rubin, G. M. et al. Comparative genomics of the eukaryotes. Science 287, 2204–2215, https://doi.org/10.1126/science.287.5461.2204 (2000). (PMID: 10.1126/science.287.5461.2204107311342754258)
Reiter, L. T., Potocki, L., Chien, S., Gribskov, M. & Bier, E. A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res. 11, 1114–1125, https://doi.org/10.1101/gr.169101 (2001). (PMID: 10.1101/gr.16910111381037311089)
Azevedo, F. A. et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513, 532–541, https://doi.org/10.1002/cne.21974 (2009). (PMID: 10.1002/cne.2197419226510)
Jenett, A. et al. A GAL4-driver line resource for Drosophila neurobiology. Cell Rep. 2, 991–1001, https://doi.org/10.1016/j.celrep.2012.09.011 (2012). (PMID: 10.1016/j.celrep.2012.09.011230633643515021)
Taniguchi, H. & Moore, A. W. Chromatin regulators in neurodevelopment and disease: Analysis of fly neural circuits provides insights: Networks of chromatin regulators and transcription factors underlie Drosophila neurogenesis and cognitive defects in intellectual disability and neuropsychiatric disorder models. Bioessays 36, 872–883, https://doi.org/10.1002/bies.201400087 (2014). (PMID: 10.1002/bies.20140008725067789)
Zwarts, L., Clements, J. & Callaerts, P. In The Making and Un-Making of Neuronal Circuits in Drosophila Neuromethods (ed Bassem A. Hassan) Ch. Chapter 1, 3–48 (Humana Press, 2012).
O’Kane, C. J. Drosophila as a model organism for the study of neuropsychiatric disorders. Curr. Top. Behav. Neurosci. 7, 37–60, https://doi.org/10.1007/7854_2010_110 (2011). (PMID: 10.1007/7854_2010_11021225410)
Venken, K. J., Simpson, J. H. & Bellen, H. J. Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72, 202–230, https://doi.org/10.1016/j.neuron.2011.09.021 (2011). (PMID: 10.1016/j.neuron.2011.09.021220179853232021)
Pfeiffer, B. D. et al. Tools for neuroanatomy and neurogenetics in Drosophila. Proc. Natl Acad. Sci. USA 105, 9715–9720, https://doi.org/10.1073/pnas.0803697105 (2008). (PMID: 10.1073/pnas.080369710518621688)
Zheng, Z. et al. A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster. Cell 174, 730–743 e722, https://doi.org/10.1016/j.cell.2018.06.019 (2018). (PMID: 10.1016/j.cell.2018.06.019300333686063995)
Engel, J. E. & Wu, C. F. Neurogenetic approaches to habituation and dishabituation in Drosophila. Neurobiol. Learn. Mem. 92, 166–175, https://doi.org/10.1016/j.nlm.2008.08.003 (2009). (PMID: 10.1016/j.nlm.2008.08.00318765288)
Ramirez, J. et al. Proteomic Analysis of the Ubiquitin Landscape in the Drosophila Embryonic Nervous System and the Adult Photoreceptor Cells. PLoS One 10, e0139083, https://doi.org/10.1371/journal.pone.0139083 (2015). (PMID: 10.1371/journal.pone.0139083264609704604154)
Ding, M. & Shen, K. The role of the ubiquitin proteasome system in synapse remodeling and neurodegenerative diseases. Bioessays 30, 1075–1083, https://doi.org/10.1002/bies.20843 (2008). (PMID: 10.1002/bies.20843189373403095215)
Patrick, G. N. Synapse formation and plasticity: recent insights from the perspective of the ubiquitin proteasome system. Curr. Opin. Neurobiol. 16, 90–94, https://doi.org/10.1016/j.conb.2006.01.007 (2006). (PMID: 10.1016/j.conb.2006.01.00716427269)
Ciechanover, A. & Brundin, P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40, 427–446 (2003). (PMID: 10.1016/S0896-6273(03)00606-8)
Zheng, Q. et al. Dysregulation of Ubiquitin-Proteasome System in Neurodegenerative Diseases. Front. Aging Neurosci. 8, 303, https://doi.org/10.3389/fnagi.2016.00303 (2016). (PMID: 10.3389/fnagi.2016.00303280182155156861)
Giasson, B. I. & Lee, V. M. Are ubiquitination pathways central to Parkinson’s disease? Cell 114, 1–8, https://doi.org/10.1016/s0092-8674(03)00509-9 (2003). (PMID: 10.1016/s0092-8674(03)00509-912859888)
Marguerat, S. et al. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 151, 671–683, https://doi.org/10.1016/j.cell.2012.09.019 (2012). (PMID: 10.1016/j.cell.2012.09.019231016333482660)
Collins, G. A. & Goldberg, A. L. The Logic of the 26S Proteasome. Cell 169, 792–806, https://doi.org/10.1016/j.cell.2017.04.023 (2017). (PMID: 10.1016/j.cell.2017.04.023285257525609836)
D’Arcy, P., Wang, X. & Linder, S. Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacol. Ther. 147, 32–54, https://doi.org/10.1016/j.pharmthera.2014.11.002 (2015). (PMID: 10.1016/j.pharmthera.2014.11.00225444757)
Gu, Z. C. & Enenkel, C. Proteasome assembly. Cell Mol. Life Sci. 71, 4729–4745, https://doi.org/10.1007/s00018-014-1699-8 (2014). (PMID: 10.1007/s00018-014-1699-825107634)
Mansour, M. A. Ubiquitination: Friend and foe in cancer. Int. J. Biochem. Cell Biol. 101, 80–93, https://doi.org/10.1016/j.biocel.2018.06.001 (2018). (PMID: 10.1016/j.biocel.2018.06.00129864543)
Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533, https://doi.org/10.1146/annurev.biochem.70.1.503 (2001). (PMID: 10.1146/annurev.biochem.70.1.5031139541611395416)
Komander, D., Clague, M. J. & Urbe, S. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10, 550–563, https://doi.org/10.1038/nrm2731 (2009). (PMID: 10.1038/nrm273119626045)
Raynes, R., Pomatto, L. C. & Davies, K. J. Degradation of oxidized proteins by the proteasome: Distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways. Mol. Asp. Med. 50, 41–55, https://doi.org/10.1016/j.mam.2016.05.001 (2016). (PMID: 10.1016/j.mam.2016.05.001)
Tanaka, K. The proteasome: overview of structure and functions. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 85, 12–36 (2009). (PMID: 10.2183/pjab.85.12)
Grigoreva, T. A., Tribulovich, V. G., Garabadzhiu, A. V., Melino, G. & Barlev, N. A. The 26S proteasome is a multifaceted target for anti-cancer therapies. Oncotarget 6, 24733–24749, https://doi.org/10.18632/oncotarget.4619 (2015). (PMID: 10.18632/oncotarget.4619262953074694792)
Lander, G. C. et al. Complete subunit architecture of the proteasome regulatory particle. Nature 482, 186–191, https://doi.org/10.1038/nature10774 (2012). (PMID: 10.1038/nature10774222370243285539)
Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156, https://doi.org/10.1038/nature05954 (2007). (PMID: 10.1038/nature0595417625558)
Velentzas, A. D. et al. Global Proteomic Profiling of Drosophila Ovary: A High-resolution, Unbiased, Accurate and Multifaceted Analysis. Cancer genomics Proteom. 12, 369–384 (2015).
Alic, N. et al. Detrimental effects of RNAi: a cautionary note on its use in Drosophila ageing studies. PLoS One 7, e45367, https://doi.org/10.1371/journal.pone.0045367 (2012). (PMID: 10.1371/journal.pone.0045367230289643444450)
Theotoki, E. I. et al. Targeting of copper-trafficking chaperones causes gene-specific systemic pathology in Drosophila melanogaster: prospective expansion of mutational landscapes that regulate tumor resistance to cisplatin. Biol Open 8, https://doi.org/10.1242/bio.046961 (2019). (PMID: 10.1242/bio.046961)
Southwood, C. M., Garbern, J., Jiang, W. & Gow, A. The unfolded protein response modulates disease severity in Pelizaeus-Merzbacher disease. Neuron 36, 585–596, https://doi.org/10.1016/s0896-6273(02)01045-0 (2002). (PMID: 10.1016/s0896-6273(02)01045-0124410494603660)
Vernace, V. A., Arnaud, L., Schmidt-Glenewinkel, T. & Figueiredo-Pereira, M. E. Aging perturbs 26S proteasome assembly in Drosophila melanogaster. FASEB J. 21, 2672–2682, https://doi.org/10.1096/fj.06-6751com (2007). (PMID: 10.1096/fj.06-6751com174130013435146)
Velentzas, P. D. et al. Detrimental effects of proteasome inhibition activity in Drosophila melanogaster: implication of ER stress, autophagy, and apoptosis. Cell Biol. Toxicol. 29, 13–37, https://doi.org/10.1007/s10565-012-9235-9 (2013). (PMID: 10.1007/s10565-012-9235-923161111)
UniProt: a hub for protein information. Nucleic Acids Res 43, D204-212, https://doi.org/10.1093/nar/gku989 (2015).
Huang da, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13, https://doi.org/10.1093/nar/gkn923 (2009). (PMID: 10.1093/nar/gkn92319033363)
Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57, https://doi.org/10.1038/nprot.2008.211 (2009). (PMID: 10.1038/nprot.2008.21119131956)
Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein science: a Publ. Protein Soc. 28, 1947–1951, https://doi.org/10.1002/pro.3715 (2019). (PMID: 10.1002/pro.3715)
Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K. & Tanabe, M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 47, D590–D595, https://doi.org/10.1093/nar/gky962 (2019). (PMID: 10.1093/nar/gky96230321428)
Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30, https://doi.org/10.1093/nar/28.1.27 (2000). (PMID: 10.1093/nar/28.1.27102409102409)
Mi, H., Muruganujan, A., Casagrande, J. T. & Thomas, P. D. Large-scale gene function analysis with the PANTHER classification system. Nat. Protoc. 8, 1551–1566, https://doi.org/10.1038/nprot.2013.092 (2013). (PMID: 10.1038/nprot.2013.092238680736519453)
Mi, H., Muruganujan, A. & Thomas, P. D. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 41, D377–386, https://doi.org/10.1093/nar/gks1118 (2013). (PMID: 10.1093/nar/gks111823193289)
Robinow, S. & White, K. Characterization and spatial distribution of the ELAV protein during Drosophila melanogaster development. J. Neurobiol. 22, 443–461, https://doi.org/10.1002/neu.480220503 (1991). (PMID: 10.1002/neu.4802205031716300)
Kaya-Copur, A. & Schnorrer, F. A Guide to Genome-Wide In Vivo RNAi Applications in Drosophila. Methods Mol. Biol. 1478, 117–143, https://doi.org/10.1007/978-1-4939-6371-3_6 (2016). (PMID: 10.1007/978-1-4939-6371-3_627730578)
Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes. Dev. 8, 1787–1802, https://doi.org/10.1101/gad.8.15.1787 (1994). (PMID: 10.1101/gad.8.15.17877958857)
Aradska, J. et al. Gel-free mass spectrometry analysis of Drosophila melanogaster heads. Proteomics 15, 3356–3360, https://doi.org/10.1002/pmic.201500092 (2015). (PMID: 10.1002/pmic.2015000922620125626201256)
Kuznetsova, K. G. et al. Brain Proteome of Drosophila melanogaster Is Enriched with Nuclear Proteins. Biochemistry 84, 71–78, https://doi.org/10.1134/S0006297919010097 (2019). (PMID: 10.1134/S000629791901009730927528)
Yamamoto, S. et al. A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell 159, 200–214, https://doi.org/10.1016/j.cell.2014.09.002 (2014). (PMID: 10.1016/j.cell.2014.09.002252599274298142)
Hamilton, A. M. & Zito, K. Breaking it down: the ubiquitin proteasome system in neuronal morphogenesis. Neural Plast. 2013, 196848, https://doi.org/10.1155/2013/196848 (2013). (PMID: 10.1155/2013/196848234768093586504)
Asano, S. et al. Proteasomes. A molecular census of 26S proteasomes in intact neurons. Science 347, 439–442, https://doi.org/10.1126/science.1261197 (2015). (PMID: 10.1126/science.126119725613890)
Zheng, C., Geetha, T. & Babu, J. R. Failure of ubiquitin proteasome system: risk for neurodegenerative diseases. Neuro-degenerative Dis. 14, 161–175, https://doi.org/10.1159/000367694 (2014). (PMID: 10.1159/000367694)
Aleong, R., Aumont, N., Dea, D. & Poirier, J. Non-steroidal anti-inflammatory drugs mediate increased in vitro glial expression of apolipoprotein E protein. Eur. J. Neurosci. 18, 1428–1438, https://doi.org/10.1046/j.1460-9568.2003.02869.x (2003). (PMID: 10.1046/j.1460-9568.2003.02869.x14511323)
Selkoe, D. J. Alzheimer’s disease is a synaptic failure. Science 298, 789–791, https://doi.org/10.1126/science.1074069 (2002). (PMID: 10.1126/science.107406912399581)
Korhonen, L. & Lindholm, D. The ubiquitin proteasome system in synaptic and axonal degeneration: a new twist to an old cycle. J. Cell Biol. 165, 27–30, https://doi.org/10.1083/jcb.200311091 (2004). (PMID: 10.1083/jcb.200311091150670202172081)
Southall, T. D., Elliott, D. A. & Brand, A. H. The GAL4 System: A Versatile Toolkit for Gene Expression in Drosophila. CSH Protoc. 2008, pdb top49, https://doi.org/10.1101/pdb.top49 (2008). (PMID: 10.1101/pdb.top4921356876)
McGuire, S. E., Roman, G. & Davis, R. L. Gene expression systems in Drosophila: a synthesis of time and space. Trends Genet. 20, 384–391, https://doi.org/10.1016/j.tig.2004.06.012 (2004). (PMID: 10.1016/j.tig.2004.06.01215262411)
Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993). (PMID: 8223268)
Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477–513, https://doi.org/10.1146/annurev.biochem.78.081507.101607 (2009). (PMID: 10.1146/annurev.biochem.78.081507.101607194897273431160)
Rosenzweig, R., Bronner, V., Zhang, D., Fushman, D. & Glickman, M. H. Rpn1 and Rpn2 coordinate ubiquitin processing factors at proteasome. J. Biol. Chem. 287, 14659–14671, https://doi.org/10.1074/jbc.M111.316323 (2012). (PMID: 10.1074/jbc.M111.316323223187223340268)
Jiang, T. X., Zhao, M. & Qiu, X. B. Substrate receptors of proteasomes. Biol. Rev. Camb. Philos. Soc. 93, 1765–1777, https://doi.org/10.1111/brv.12419 (2018). (PMID: 10.1111/brv.1241929732666)
Velentzas, P. D. et al. Proteasome, but not autophagy, disruption results in severe eye and wing dysmorphia: a subunit- and regulator-dependent process in Drosophila. PLoS One 8, e80530, https://doi.org/10.1371/journal.pone.0080530 (2013). (PMID: 10.1371/journal.pone.0080530242825503839973)
Livneh, I., Cohen-Kaplan, V., Cohen-Rosenzweig, C., Avni, N. & Ciechanover, A. The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res. 26, 869–885, https://doi.org/10.1038/cr.2016.86 (2016). (PMID: 10.1038/cr.2016.86274448714973335)
Park, S., Kim, W., Tian, G., Gygi, S. P. & Finley, D. Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response. J. Biol. Chem. 286, 36652–36666, https://doi.org/10.1074/jbc.M111.285924 (2011). (PMID: 10.1074/jbc.M111.285924218786523196138)
Leme, J. M. M. et al. Mutations of Cys and Ser residues in the alpha5-subunit of the 20S proteasome from Saccharomyces cerevisiae affects gating and chronological lifespan. Arch. Biochem. Biophys. 666, 63–72, https://doi.org/10.1016/j.abb.2019.03.012 (2019). (PMID: 10.1016/j.abb.2019.03.01230940569)
Jung, T., Catalgol, B. & Grune, T. The proteasomal system. Mol. Asp. Med. 30, 191–296, https://doi.org/10.1016/j.mam.2009.04.001 (2009). (PMID: 10.1016/j.mam.2009.04.001)
Saville, K. J. & Belote, J. M. Identification of an essential gene, l(3)73Ai, with a dominant temperature-sensitive lethal allele, encoding a Drosophila proteasome subunit. Proc. Natl Acad. Sci. USA 90, 8842–8846, https://doi.org/10.1073/pnas.90.19.8842 (1993). (PMID: 10.1073/pnas.90.19.88428415617)
Schweisguth, F. Dominant-negative mutation in the beta2 and beta6 proteasome subunit genes affect alternative cell fate decisions in the Drosophila sense organ lineage. Proc. Natl Acad. Sci. USA 96, 11382–11386, https://doi.org/10.1073/pnas.96.20.11382 (1999). (PMID: 10.1073/pnas.96.20.1138210500185)
Smyth, K. A. & Belote, J. M. The dominant temperature-sensitive lethal DTS7 of Drosophila melanogaster encodes an altered 20S proteasome beta-type subunit. Genetics 151, 211–220 (1999). (PMID: 98729611460450)
Belote, J. M. & Fortier, E. Targeted expression of dominant negative proteasome mutants in Drosophila melanogaster. Genesis 34, 80–82, https://doi.org/10.1002/gene.10131 (2002). (PMID: 10.1002/gene.1013112324954)
Groll, M. et al. The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. Proc. Natl Acad. Sci. USA 96, 10976–10983, https://doi.org/10.1073/pnas.96.20.10976 (1999). (PMID: 10.1073/pnas.96.20.1097610500111)
Tomaru, U. et al. Decreased proteasomal activity causes age-related phenotypes and promotes the development of metabolic abnormalities. Am. J. Pathol. 180, 963–972, https://doi.org/10.1016/j.ajpath.2011.11.012 (2012). (PMID: 10.1016/j.ajpath.2011.11.01222210478)
Nguyen, N. N. et al. Proteasome beta5 subunit overexpression improves proteostasis during aging and extends lifespan in Drosophila melanogaster. Sci. Rep. 9, 3170, https://doi.org/10.1038/s41598-019-39508-4 (2019). (PMID: 10.1038/s41598-019-39508-4308166806395709)
Ye, Y. & Rape, M. Building ubiquitin chains: E2 enzymes at work. Nat. Rev. Mol. Cell Biol. 10, 755–764, https://doi.org/10.1038/nrm2780 (2009). (PMID: 10.1038/nrm2780198513343107738)
Valimberti, I., Tiberti, M., Lambrughi, M., Sarcevic, B. & Papaleo, E. E2 superfamily of ubiquitin-conjugating enzymes: constitutively active or activated through phosphorylation in the catalytic cleft. Sci. Rep. 5, 14849, https://doi.org/10.1038/srep14849 (2015). (PMID: 10.1038/srep14849264637294604453)
van Wijk, S. J. & Timmers, H. T. The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J. 24, 981–993, https://doi.org/10.1096/fj.09-136259 (2010). (PMID: 10.1096/fj.09-13625919940261)
Stewart, M. D., Ritterhoff, T., Klevit, R. E. & Brzovic, P. S. E2 enzymes: more than just middle men. Cell Res. 26, 423–440, https://doi.org/10.1038/cr.2016.35 (2016). (PMID: 10.1038/cr.2016.35270022194822130)
Wenzel, D. M., Stoll, K. E. & Klevit, R. E. E2s: structurally economical and functionally replete. Biochem. J. 433, 31–42, https://doi.org/10.1042/BJ20100985 (2011). (PMID: 10.1042/BJ2010098521158740)
Treier, M., Seufert, W. & Jentsch, S. Drosophila UbcD1 encodes a highly conserved ubiquitin-conjugating enzyme involved in selective protein degradation. EMBO J. 11, 367–372 (1992). (PMID: 10.1002/j.1460-2075.1992.tb05059.x)
Cenci, G. et al. UbcD1, a Drosophila ubiquitin-conjugating enzyme required for proper telomere behavior. Genes. Dev. 11, 863–875, https://doi.org/10.1101/gad.11.7.863 (1997). (PMID: 10.1101/gad.11.7.8639106658)
Pan, C. et al. UbcD1 regulates Hedgehog signaling by directly modulating Ci ubiquitination and processing. EMBO Rep. 18, 1922–1934, https://doi.org/10.15252/embr.201643289 (2017). (PMID: 10.15252/embr.201643289288873185666607)
Chen, D. et al. Effete-mediated degradation of Cyclin A is essential for the maintenance of germline stem cells in Drosophila. Development 136, 4133–4142, https://doi.org/10.1242/dev.039032 (2009). (PMID: 10.1242/dev.03903219906849)
Yoo, S. J. Grim stimulates Diap1 poly-ubiquitination by binding to UbcD1. Mol. Cell 20, 446–451 (2005).
Ryoo, H. D., Bergmann, A., Gonen, H., Ciechanover, A. & Steller, H. Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nat. Cell Biol. 4, 432–438, https://doi.org/10.1038/ncb795 (2002). (PMID: 10.1038/ncb79512021769)
Ohlmeyer, J. T. & Schupbach, T. Encore facilitates SCF-Ubiquitin-proteasome-dependent proteolysis during Drosophila oogenesis. Development 130, 6339–6349, https://doi.org/10.1242/dev.00855 (2003). (PMID: 10.1242/dev.0085514623823)
Bocca, S. N., Muzzopappa, M., Silberstein, S. & Wappner, P. Occurrence of a putative SCF ubiquitin ligase complex in Drosophila. Biochem. Biophys. Res. Commun. 286, 357–364, https://doi.org/10.1006/bbrc.2001.5394 (2001). (PMID: 10.1006/bbrc.2001.539411500045)
Li, S. et al. The SCFSlimb E3 ligase complex regulates asymmetric division to inhibit neuroblast overgrowth. EMBO Rep. 15, 165–174, https://doi.org/10.1002/embr.201337966 (2014). (PMID: 10.1002/embr.201337966244135553989862)
Mevissen, T. E. T. & Komander, D. Mechanisms of Deubiquitinase Specificity and Regulation. Annu. Rev. Biochem. 86, 159–192, https://doi.org/10.1146/annurev-biochem-061516-044916 (2017). (PMID: 10.1146/annurev-biochem-061516-04491628498721)
Leznicki, P. & Kulathu, Y. Mechanisms of regulation and diversification of deubiquitylating enzyme function. J. Cell Sci. 130, 1997–2006, https://doi.org/10.1242/jcs.201855 (2017). (PMID: 10.1242/jcs.20185528476940)
Zhang, J., Liu, M., Su, Y., Du, J. & Zhu, A. J. A targeted in vivo RNAi screen reveals deubiquitinases as new regulators of Notch signaling. G3 2, 1563–1575, https://doi.org/10.1534/g3.112.003780 (2012). (PMID: 10.1534/g3.112.00378023275879)
Tsou, W. L. et al. Systematic analysis of the physiological importance of deubiquitinating enzymes. PLoS One 7, e43112, https://doi.org/10.1371/journal.pone.0043112 (2012). (PMID: 10.1371/journal.pone.0043112229370163427330)
He, M. et al. The emerging role of deubiquitinating enzymes in genomic integrity, diseases, and therapeutics. Cell Biosci. 6, 62, https://doi.org/10.1186/s13578-016-0127-1 (2016). (PMID: 10.1186/s13578-016-0127-1280317835168870)
Peschiaroli, A., Skaar, J. R., Pagano, M. & Melino, G. The ubiquitin-specific protease USP47 is a novel beta-TRCP interactor regulating cell survival. Oncogene 29, 1384–1393, https://doi.org/10.1038/onc.2009.430 (2010). (PMID: 10.1038/onc.2009.4301996686919966869)
Yang, S. W. et al. USP47 and C terminus of Hsp70-interacting protein (CHIP) antagonistically regulate katanin-p60-mediated axonal growth. J. Neurosci. 33, 12728–12738, https://doi.org/10.1523/JNEUROSCI.0698-13.2013 (2013). (PMID: 10.1523/JNEUROSCI.0698-13.2013239046094469866)
Henchoz, S., De Rubertis, F., Pauli, D. & Spierer, P. The dose of a putative ubiquitin-specific protease affects position-effect variegation in Drosophila melanogaster. Mol. Cell Biol. 16, 5717–5725, https://doi.org/10.1128/mcb.16.10.5717 (1996). (PMID: 10.1128/mcb.16.10.57178816485231572)
Bajpe, P. K. et al. Deubiquitylating enzyme UBP64 controls cell fate through stabilization of the transcriptional repressor tramtrack. Mol. Cell Biol. 28, 1606–1615, https://doi.org/10.1128/MCB.01567-07 (2008). (PMID: 10.1128/MCB.01567-0718160715)
Shahrestani, P. et al. Sexual dimorphism in Drosophila melanogaster survival of Beauveria bassiana infection depends on core immune signaling. Sci. Rep. 8, 12501, https://doi.org/10.1038/s41598-018-30527-1 (2018). (PMID: 10.1038/s41598-018-30527-1301315996104035)
Tower, J. Mitochondrial maintenance failure in aging and role of sexual dimorphism. Arch. Biochem. Biophys. 576, 17–31, https://doi.org/10.1016/j.abb.2014.10.008 (2015). (PMID: 10.1016/j.abb.2014.10.00825447815)
DiAntonio, A. et al. Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature 412, 449–452, https://doi.org/10.1038/35086595 (2001). (PMID: 10.1038/3508659511473321)
Liu, Z., Chen, Y., Wang, D., Wang, S. & Zhang, Y. Q. Distinct presynaptic and postsynaptic dismantling processes of Drosophila neuromuscular junctions during metamorphosis. J. Neurosci. 30, 11624–11634, https://doi.org/10.1523/JNEUROSCI.0410-10.2010 (2010). (PMID: 10.1523/JNEUROSCI.0410-10.2010208108836633425)
Watts, R. J., Hoopfer, E. D. & Luo, L. Axon pruning during Drosophila metamorphosis: evidence for local degeneration and requirement of the ubiquitin-proteasome system. Neuron 38, 871–885 (2003). (PMID: 10.1016/S0896-6273(03)00295-2)
Kuo, C. T., Jan, L. Y. & Jan, Y. N. Dendrite-specific remodeling of Drosophila sensory neurons requires matrix metalloproteases, ubiquitin-proteasome, and ecdysone signaling. Proc. Natl Acad. Sci. USA 102, 15230–15235, https://doi.org/10.1073/pnas.0507393102 (2005). (PMID: 10.1073/pnas.050739310216210248)
Tao, J. & Rolls, M. M. Dendrites have a rapid program of injury-induced degeneration that is molecularly distinct from developmental pruning. J. Neurosci. 31, 5398–5405, https://doi.org/10.1523/JNEUROSCI.3826-10.2011 (2011). (PMID: 10.1523/JNEUROSCI.3826-10.2011214713753086555)
Buckingham, S. D., Esmaeili, B., Wood, M. & Sattelle, D. B. RNA interference: from model organisms towards therapy for neural and neuromuscular disorders. Hum. Mol. Genet. 13(Spec No 2), R275–288, https://doi.org/10.1093/hmg/ddh224 (2004). (PMID: 10.1093/hmg/ddh22415358735)
Bangi, E. et al. A personalized platform identifies trametinib plus zoledronate for a patient with KRAS-mutant metastatic colorectal cancer. Sci. Adv. 5, eaav6528, https://doi.org/10.1126/sciadv.aav6528 (2019). (PMID: 10.1126/sciadv.aav6528311313216531007) - Grant Information: P40 OD018537 United States OD NIH HHS
- الرقم المعرف: 0 (Drosophila Proteins)
0 (ELAV Proteins)
0 (ELAV protein, Drosophila)
0 (GAL4 protein, Drosophila)
0 (Transcription Factors)
0 (Ubiquitin)
EC 3.4.25.1 (Proteasome Endopeptidase Complex) - الموضوع: Date Created: 20200328 Date Completed: 20201216 Latest Revision: 20210325
- الموضوع: 20231215
- الرقم المعرف: PMC7096425
- الرقم المعرف: 10.1038/s41598-020-62510-0
- الرقم المعرف: 32214222
- المصدر:
حقوق النشر© 2024، دائرة الثقافة والسياحة جميع الحقوق محفوظة Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
حقوق النشر © دائرة الثقافة والسياحة، جميع الحقوق محفوظة
No Comments.