Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Oral lichen planus interactome reveals CXCR4 and CXCL12 as candidate therapeutic targets.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Today, we face difficulty in generating new hypotheses and understanding oral lichen planus due to the large amount of biomedical information available. In this research, we have used an integrated bioinformatics approach assimilating information from data mining, gene ontologies, protein-protein interaction and network analysis to predict candidate genes related to oral lichen planus. A detailed pathway analysis led us to propose two promising therapeutic targets: the stromal cell derived factor 1 (CXCL12) and the C-X-C type 4 chemokine receptor (CXCR4). We further validated our predictions and found that CXCR4 was upregulated in all oral lichen planus tissue samples. Our bioinformatics data cumulatively support the pathological role of chemokines and chemokine receptors in oral lichen planus. From a clinical perspective, we suggest a drug (plerixafor) and two therapeutic targets for future research.
    • References:
      Lavanya, N., Jayanthi, P., Rao, U. K. & Ranganathan, K. Oral lichen planus: An update on pathogenesis and treatment. J. Oral. Maxillofac. Pathol. 15, 127–132, https://doi.org/10.4103/0973-029x.84474 (2011). (PMID: 10.4103/0973-029x.84474225295683329692)
      Cheng, Y. S., Gould, A., Kurago, Z., Fantasia, J. & Muller, S. Diagnosis of oral lichen planus: a position paper of the American Academy of Oral and Maxillofacial Pathology. Oral. Surg. Oral Med. Oral Pathol. Oral Radiol. 122, 332–354, https://doi.org/10.1016/j.oooo.2016.05.004 (2016). (PMID: 10.1016/j.oooo.2016.05.00427401683)
      Carrozzo, M., Porter, S., Mercadante, V. & Fedele, S. Oral lichen planus: A disease or a spectrum of tissue reactions? Types, causes, diagnostic algorhythms, prognosis, management strategies. Periodontol 2000 80, 105–125, https://doi.org/10.1111/prd.12260 (2019). (PMID: 10.1111/prd.1226031090143)
      Olson, M. A., Rogers, R. S. III & Bruce, A. J. Oral lichen planus. Clin. Dermatol. 34, 495–504, https://doi.org/10.1016/j.clindermatol.2016.02.023 (2016). (PMID: 10.1016/j.clindermatol.2016.02.02327343965)
      Peng, Q., Zhang, J., Ye, X. & Zhou, G. Tumor-like microenvironment in oral lichen planus: evidence of malignant transformation? Expert. Rev. Clin. Immunol. 13, 635–643, https://doi.org/10.1080/1744666x.2017.1295852 (2017). (PMID: 10.1080/1744666x.2017.129585228494213)
      Giuliani, M. & Troiano, G. Rate of malignant transformation of oral lichen planus: A systematic review. Oral. Dis. 25, 693–709, https://doi.org/10.1111/odi.12885 (2019). (PMID: 10.1111/odi.1288529738106)
      Barabasi, A. L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68, https://doi.org/10.1038/nrg2918 (2011). (PMID: 10.1038/nrg2918211645253140052)
      Cheung, W. A., Ouellette, B. F. & Wasserman, W. W. Inferring novel gene-disease associations using Medical Subject Heading Over-representation Profiles. Genome Med. 4, 75, https://doi.org/10.1186/gm376 (2012). (PMID: 10.1186/gm376230215523580445)
      Kumar, R., Samal, S. K., Routray, S., Dash, R. & Dixit, A. Identification of oral cancer related candidate genes by integrating protein-protein interactions, gene ontology, pathway analysis and immunohistochemistry. Sci. Rep. 7, 2472, https://doi.org/10.1038/s41598-017-02522-5 (2017). (PMID: 10.1038/s41598-017-02522-5285595465449392)
      Piro, R. M. & Di Cunto, F. Computational approaches to disease-gene prediction: rationale, classification and successes. Febs J. 279, 678–696, https://doi.org/10.1111/j.1742-4658.2012.08471.x (2012). (PMID: 10.1111/j.1742-4658.2012.08471.x22221742)
      Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504, https://doi.org/10.1101/gr.1239303 (2003). (PMID: 10.1101/gr.12393031459765814597658)
      Ortutay, C. & Vihinen, M. Identification of candidate disease genes by integrating Gene Ontologies and protein-interaction networks: case study of primary immunodeficiencies. Nucleic Acids Res. 37, 622–628, https://doi.org/10.1093/nar/gkn982 (2009). (PMID: 10.1093/nar/gkn98219073697)
      Rivera, C. et al. Agrin has a pathological role in the progression of oral cancer. Br. J. Cancer 188, 1628–1638, https://doi.org/10.1038/s41416-018-0135-5 (2018). (PMID: 10.1038/s41416-018-0135-5)
      Siddani, B. R., Pochineni, L. P. & Palanisamy, M. Candidate gene identification for systemic lupus erythematosus using network centrality measures and gene ontology. PLoS One 8, e81766, https://doi.org/10.1371/journal.pone.0081766 (2013). (PMID: 10.1371/journal.pone.0081766243125833847089)
      Jamal, S., Goyal, S., Shanker, A. & Grover, A. Integrating network, sequence and functional features using machine learning approaches towards identification of novel Alzheimer genes. BMC Genomics 17, 807, https://doi.org/10.1186/s12864-016-3108-1 (2016). (PMID: 10.1186/s12864-016-3108-1277562235070370)
      Sun, Y. et al. Combining genomic and network characteristics for extended capability in predicting synergistic drugs for cancer. Nat. Commun. 6, 8481, https://doi.org/10.1038/ncomms9481 (2015). (PMID: 10.1038/ncomms9481264124664598846)
      World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. Jama 310, 2191–2194, https://doi.org/10.1001/jama.2013.281053 (2013). (PMID: 10.1001/jama.2013.281053)
      Fontaine, J.-F., Priller, F., Barbosa-Silva, A. & Andrade-Navarro, M. A. Genie: literature-based gene prioritization at multi genomic scale. Nucleic acids Res. 39, W455–W461 (2011). (PMID: 10.1093/nar/gkr246)
      Mi, H. et al. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 45, D183–d189, https://doi.org/10.1093/nar/gkw1138 (2017). (PMID: 10.1093/nar/gkw113827899595)
      Muetze, T. et al. Contextual Hub Analysis Tool (CHAT): A Cytoscape app for identifying contextually relevant hubs in biological networks. F1000Res. 5, 1745, https://doi.org/10.12688/f1000research.9118.2 (2016). (PMID: 10.12688/f1000research.9118.2278535125105880)
      Szklarczyk, D. et al. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 44, D380–384, https://doi.org/10.1093/nar/gkv1277 (2016). (PMID: 10.1093/nar/gkv127726590256)
      Kerrien, S. et al. The IntAct molecular interaction database in 2012. Nucleic Acids Res. 40, D841–846, https://doi.org/10.1093/nar/gkr1088 (2012). (PMID: 10.1093/nar/gkr108822121220)
      Domingueti, C. B. et al. Prognostic value of immunoexpression of CCR4, CCR5, CCR7 and CXCR4 in squamous cell carcinoma of tongue and floor of the mouth. Med. Oral. Patol. Oral Cir. Bucal 24, e354–e363, https://doi.org/10.4317/medoral.22904 (2019). (PMID: 10.4317/medoral.22904310111476530956)
      Gonzalez-Arriagada, W. A., Lozano-Burgos, C., Zuniga-Moreta, R., Gonzalez-Diaz, P. & Coletta, R. D. Clinicopathological significance of chemokine receptor (CCR1, CCR3, CCR4, CCR5, CCR7 and CXCR4) expression in head and neck squamous cell carcinomas. J. Oral. Pathol. Med. 47, 755–763, https://doi.org/10.1111/jop.12736 (2018). (PMID: 10.1111/jop.1273629797610)
      Muetze, T. & Lynn, D. J. Using the Contextual Hub Analysis Tool (CHAT) in Cytoscape to Identify Contextually Relevant Network Hubs. Curr. Protoc. Bioinforma. 59, 8.24.21–28.24.13, https://doi.org/10.1002/cpbi.35 (2017). (PMID: 10.1002/cpbi.35)
      Kim, J., Kim, J. J. & Lee, H. An analysis of disease-gene relationship from Medline abstracts by DigSee. Sci. Rep. 7, 40154, https://doi.org/10.1038/srep40154 (2017). (PMID: 10.1038/srep40154280546465215527)
      Pletscher-Frankild, S., Palleja, A., Tsafou, K., Binder, J. X. & Jensen, L. J. DISEASES: text mining and data integration of disease-gene associations. Methods 74, 83–89, https://doi.org/10.1016/j.ymeth.2014.11.020 (2015). (PMID: 10.1016/j.ymeth.2014.11.02025484339)
      Xu, D. et al. DTMiner: identification of potential disease targets through biomedical literature mining. Bioinformatics 32, 3619–3626, https://doi.org/10.1093/bioinformatics/btw503 (2016). (PMID: 10.1093/bioinformatics/btw503275062265181534)
      Barbosa-Silva, A. et al. PESCADOR, a web-based tool to assist text-mining of biointeractions extracted from PubMed queries. BMC Bioinforma. 12, 435, https://doi.org/10.1186/1471-2105-12-435 (2011). (PMID: 10.1186/1471-2105-12-435)
      Fontaine, J. F., Priller, F., Barbosa-Silva, A. & Andrade-Navarro, M. A. Genie: literature-based gene prioritization at multi genomic scale. Nucleic Acids Res. 39, W455–461, https://doi.org/10.1093/nar/gkr246 (2011). (PMID: 10.1093/nar/gkr246216099543125729)
      Liu, Y., Liang, Y. & Wishart, D. PolySearch2: a significantly improved text-mining system for discovering associations between human diseases, genes, drugs, metabolites, toxins and more. Nucleic Acids Res. 43, W535–542, https://doi.org/10.1093/nar/gkv383 (2015). (PMID: 10.1093/nar/gkv383259255724489268)
      Teng, Y. et al. Genome-wide haplotype association study identifies risk genes for non-small cell lung cancer. J. Theor. Biol. 456, 84–90 (2018). (PMID: 10.1016/j.jtbi.2018.08.007)
      Chiang, C.-P. et al. Oral lichen planus–Differential diagnoses, serum autoantibodies, hematinic deficiencies, and management. J. Form. Med. Assoc. (2018).
      Turner, M. D., Nedjai, B., Hurst, T. & Pennington, D. J. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta 1843, 2563–2582, https://doi.org/10.1016/j.bbamcr.2014.05.014 (2014). (PMID: 10.1016/j.bbamcr.2014.05.01424892271)
      Marshall, A., Celentano, A., Cirillo, N., McCullough, M. & Porter, S. Tissue-specific regulation of CXCL9/10/11 chemokines in keratinocytes: Implications for oral inflammatory disease. PLoS one 12, e0172821 (2017). (PMID: 10.1371/journal.pone.0172821)
      Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977–988, https://doi.org/10.1016/j.immuni.2006.10.016 (2006). (PMID: 10.1016/j.immuni.2006.10.01617174120)
      Soria, G. & Ben-Baruch, A. The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett. 267, 271–285 (2008). (PMID: 10.1016/j.canlet.2008.03.018)
      Marsland, B. J. et al. CCL19 and CCL21 induce a potent proinflammatory differentiation program in licensed dendritic cells. Immunity 22, 493–505 (2005). (PMID: 10.1016/j.immuni.2005.02.010)
      Koch, A. E. et al. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258, 1798–1801 (1992). (PMID: 10.1126/science.1281554)
      Krupaa, R. J., Sankari, S. L., Masthan, K. M. & Rajesh, E. Oral lichen planus: An overview. J. Pharm. Bioallied Sci. 7, S158–161, https://doi.org/10.4103/0975-7406.155873 (2015). (PMID: 10.4103/0975-7406.155873260156964439656)
      Ghaleno, M. N., Shahrekipour, M. & Mahdavifard, H. Evaluation of blood groups in patients with oral lichen planus. Dent. Clin. Exp. J., https://doi.org/10.5812/dcej.9386 (2018).
      Mousavi, A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol. Lett. 217, 91–115, https://doi.org/10.1016/j.imlet.2019.11.007 (2019). (PMID: 10.1016/j.imlet.2019.11.00731747563)
      Garcia-Cuesta, E. M. et al. The Role of the CXCL12/CXCR4/ACKR3 Axis in Autoimmune Diseases. Front. Endocrinol. 10, 585, https://doi.org/10.3389/fendo.2019.00585 (2019). (PMID: 10.3389/fendo.2019.00585)
      Isles, H. M. et al. The CXCL12/CXCR4 Signaling Axis Retains Neutrophils at Inflammatory Sites in Zebrafish. Front. Immunol. 10, 1784, https://doi.org/10.3389/fimmu.2019.01784 (2019). (PMID: 10.3389/fimmu.2019.01784314175606684839)
      Liu, T., Li, X., You, S., Bhuyan, S. S. & Dong, L. Effectiveness of AMD3100 in treatment of leukemia and solid tumors: from original discovery to use in current clinical practice. Exp. Hematol. Oncol. 5, 19, https://doi.org/10.1186/s40164-016-0050-5 (2015). (PMID: 10.1186/s40164-016-0050-527429863)
      Burger, J. A. & Peled, A. CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia 23, 43–52, https://doi.org/10.1038/leu.2008.299 (2009). (PMID: 10.1038/leu.2008.29918987663)
      Ichimura, M. et al. Expression profile of chemokines and chemokine receptors in epithelial cell layers of oral lichen planus. J. oral. Pathol. Med. 35, 167–174 (2006). (PMID: 10.1111/j.1600-0714.2006.00402.x)
      Amsen, D., de Visser, K. E. & Town, T. Approaches to determine expression of inflammatory cytokines. Methods Mol. Biol. 511, 107–142, https://doi.org/10.1007/978-1-59745-447-6_5 (2009). (PMID: 10.1007/978-1-59745-447-6_5193472952698024)
      Pablos, J. L. et al. Stromal-cell derived factor is expressed by dendritic cells and endothelium in human skin. Am. J. Pathol. 155, 1577–1586, https://doi.org/10.1016/s0002-9440(10)65474-0 (1999). (PMID: 10.1016/s0002-9440(10)65474-0105503151866989)
      Sallusto, F. et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 28, 2760-2769, https://doi.org/10.1002/(sici)1521-4141 (1998).
      Caux, C. et al. Dendritic cell biology and regulation of dendritic cell trafficking by chemokines. Springer Semin. Immunopathol. 22, 345–369 (2000). (PMID: 10.1007/s002810000053)
      Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252, https://doi.org/10.1038/32588 (1998). (PMID: 10.1038/3258895213199521319)
      Devi, M., Vijayalakshmi, D., Dhivya, K., Janane, M. & Memory, T. Cells (CD45RO) Role and Evaluation in Pathogenesis of Lichen Planus and Lichenoid Mucositis. J. Clin. Diagn. Res. 11, Zc84–zc86, https://doi.org/10.7860/jcdr/2017/26866.9930 (2017). (PMID: 10.7860/jcdr/2017/26866.9930286589155483817)
      Arieta Kuksin, C., Gonzalez-Perez, G. & Minter, L. M. CXCR4 expression on pathogenic T cells facilitates their bone marrow infiltration in a mouse model of aplastic anemia. Blood 125, 2087–2094, https://doi.org/10.1182/blood-2014-08-594796 (2015). (PMID: 10.1182/blood-2014-08-594796256478364375106)
      Thongprasom, K., Carrozzo, M., Furness, S. & Lodi, G. Interventions for treating oral lichen planus. Cochrane Database Syst. Rev., Cd001168, https://doi.org/10.1002/14651858.CD001168.pub2 (2011).
      Lodi, G., Carrozzo, M., Furness, S. & Thongprasom, K. Interventions for treating oral lichen planus: a systematic review. Br. J. Dermatol. 166, 938–947, https://doi.org/10.1111/j.1365-2133.2012.10821.x (2012). (PMID: 10.1111/j.1365-2133.2012.10821.x22242640)
    • الرقم المعرف:
      0 (Benzylamines)
      0 (CXCL12 protein, human)
      0 (CXCR4 protein, human)
      0 (Chemokine CXCL12)
      0 (Cyclams)
      0 (Heterocyclic Compounds)
      0 (Receptors, CXCR4)
      S915P5499N (plerixafor)
    • الموضوع:
      Date Created: 20200328 Date Completed: 20201216 Latest Revision: 20211204
    • الموضوع:
      20250114
    • الرقم المعرف:
      PMC7096434
    • الرقم المعرف:
      10.1038/s41598-020-62258-7
    • الرقم المعرف:
      32214134