Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Cerebellar Ataxia Caused by Type II Unipolar Brush Cell Dysfunction in the Asic5 Knockout Mouse.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Unipolar brush cells (UBCs) are excitatory granular layer interneurons in the vestibulocerebellum. Here we assessed motor coordination and balance to investigate if deletion of acid-sensing ion channel 5 (Asic5), which is richly expressed in type II UBCs, is sufficient to cause ataxia. The possible cellular mechanism underpinning ataxia in this global Asic5 knockout model was elaborated using brain slice electrophysiology. Asic5 deletion impaired motor performance and decreased intrinsic UBC excitability, reducing spontaneous action potential firing by slowing maximum depolarization rate. Reduced intrinsic excitability in UBCs was partially compensated by suppression of the magnitude and duration of delayed hyperpolarizing K + currents triggered by glutamate. Glutamate typically stimulates burst firing subsequent to this hyperpolarization in normal type II UBCs. Burst firing frequency was elevated in knockout type II UBCs because it was initiated from a more depolarized potential compared to normal cells. Findings indicate that Asic5 is important for type II UBC activity and that loss of Asic5 contributes to impaired movement, likely, at least in part, due to altered temporal processing of vestibular input.
    • References:
      Carlson, K. M., Andresen, J. M. & Orr, H. T. Emerging pathogenic pathways in the spinocerebellar ataxias. Curr. Opin. Genet. Dev. 19, 247–253, https://doi.org/10.1016/j.gde.2009.02.009 (2009). (PMID: 10.1016/j.gde.2009.02.009193450872721007)
      Hartmann, J. et al. TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59, 392–398, https://doi.org/10.1016/j.neuron.2008.06.009 (2008). (PMID: 10.1016/j.neuron.2008.06.009187010652643468)
      Lalonde, R. & Strazielle, C. Spontaneous and induced mouse mutations with cerebellar dysfunctions: behavior and neurochemistry. Brain Res. 1140, 51–74, https://doi.org/10.1016/j.brainres.2006.01.031 (2007). (PMID: 10.1016/j.brainres.2006.01.03116499884)
      Mugnaini, E., Sekerkova, G. & Martina, M. The unipolar brush cell: a remarkable neuron finally receiving deserved attention. Brain Res. Rev. 66, 220–245, https://doi.org/10.1016/j.brainresrev.2010.10.001 (2011). (PMID: 10.1016/j.brainresrev.2010.10.00120937306)
      van Dorp, S. & De Zeeuw, C. I. Forward signaling by unipolar brush cells in the mouse cerebellum. Cerebellum 14, 528–533, https://doi.org/10.1007/s12311-015-0693-5 (2015). (PMID: 10.1007/s12311-015-0693-5261297144612437)
      Kim, J. A., Sekerkova, G., Mugnaini, E. & Martina, M. Electrophysiological, morphological, and topological properties of two histochemically distinct subpopulations of cerebellar unipolar brush cells. Cerebellum 11, 1012–1025, https://doi.org/10.1007/s12311-012-0380-8 (2012). (PMID: 10.1007/s12311-012-0380-8225289653478498)
      Nunzi, M. G., Shigemoto, R. & Mugnaini, E. Differential expression of calretinin and metabotropic glutamate receptor mGluR1alpha defines subsets of unipolar brush cells in mouse cerebellum. J. Comp. Neurol. 451, 189–199, https://doi.org/10.1002/cne.10344 (2002). (PMID: 10.1002/cne.1034412209836)
      Sekerkova, G., Watanabe, M., Martina, M. & Mugnaini, E. Differential distribution of phospholipase C beta isoforms and diaglycerol kinase-beta in rodents cerebella corroborates the division of unipolar brush cells into two major subtypes. Brain Struct. Funct. 219, 719–749, https://doi.org/10.1007/s00429-013-0531-9 (2014). (PMID: 10.1007/s00429-013-0531-923503970)
      Borges-Merjane, C. & Trussell, L. O. ON and OFF unipolar brush cells transform multisensory inputs to the auditory system. Neuron 85, 1029–1042, https://doi.org/10.1016/j.neuron.2015.02.009 (2015). (PMID: 10.1016/j.neuron.2015.02.009257417274370778)
      van Dorp, S. & De Zeeuw, C. I. Variable timing of synaptic transmission in cerebellar unipolar brush cells. Proc. Natl Acad. Sci. USA 111, 5403–5408, https://doi.org/10.1073/pnas.1314219111 (2014). (PMID: 10.1073/pnas.131421911124706875)
      Zampini, V. et al. Mechanisms and functional roles of glutamatergic synapse diversity in a cerebellar circuit. Elife 5, https://doi.org/10.7554/eLife.15872 (2016).
      Rice, D. S. et al. Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organization in the mammalian brain. Dev. 125, 3719–3729 (1998).
      Manto, M. & Marmolino, D. Animal models of human cerebellar ataxias: a cornerstone for the therapies of the twenty-first century. Cerebellum 8, 137–154, https://doi.org/10.1007/s12311-009-0127-3 (2009). (PMID: 10.1007/s12311-009-0127-319669387)
      Becker, E. B. The Moonwalker mouse: new insights into TRPC3 function, cerebellar development, and ataxia. Cerebellum 13, 628–636, https://doi.org/10.1007/s12311-014-0564-5 (2014). (PMID: 10.1007/s12311-014-0564-5247972794155175)
      Ilijic, E., Guidotti, A. & Mugnaini, E. Moving up or moving down? Malpositioned cerebellar unipolar brush cells in reeler mouse. Neurosci. 136, 633–647, https://doi.org/10.1016/j.neuroscience.2005.01.030 (2005). (PMID: 10.1016/j.neuroscience.2005.01.030)
      Sekerkova, G. et al. Early onset of ataxia in moonwalker mice is accompanied by complete ablation of type II unipolar brush cells and Purkinje cell dysfunction. J. Neurosci. 33, 19689–19694, https://doi.org/10.1523/JNEUROSCI.2294-13.2013 (2013). (PMID: 10.1523/JNEUROSCI.2294-13.2013243367323858636)
      Chalfie, M., Driscoll, M. & Huang, M. Degenerin similarities. Nat. 361, 504, https://doi.org/10.1038/361504a0 (1993). (PMID: 10.1038/361504a0)
      Askwith, C. C., Benson, C. J., Welsh, M. J. & Snyder, P. M. DEG/ENaC ion channels involved in sensory transduction are modulated by cold temperature. Proc. Natl Acad. Sci. USA 98, 6459–6463, https://doi.org/10.1073/pnas.111155398 (2001). (PMID: 10.1073/pnas.11115539811353858)
      Askwith, C. C. et al. Neuropeptide FF and FMRFamide potentiate acid-evoked currents from sensory neurons and proton-gated DEG/ENaC channels. Neuron 26, 133–141 (2000). (PMID: 10.1016/S0896-6273(00)81144-7)
      Huang, Y. et al. Two aspects of ASIC function: Synaptic plasticity and neuronal injury. Neuropharmacol. 94, 42–48, https://doi.org/10.1016/j.neuropharm.2014.12.010 (2015). (PMID: 10.1016/j.neuropharm.2014.12.010)
      Chiang, P.-H. et al. at multiple glutamatergic synapses in amygdala network is required for fear memory. Sci. Rep. 5, 10143, https://doi.org/10.1038/srep10143 (2015). (PMID: 10.1038/srep10143259883574437300)
      Boscardin, E., Alijevic, O., Hummler, E., Frateschi, S. & Kellenberger, S. The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC): IUPHAR Review 19. Br. J. Pharmacol. 173, 2671–2701, https://doi.org/10.1111/bph.13533 (2016). (PMID: 10.1111/bph.13533272783294995293)
      Durrnagel, S. et al. Three homologous subunits form a high affinity peptide-gated ion channel in Hydra. J. Biol. Chem. 285, 11958–11965, https://doi.org/10.1074/jbc.M109.059998 (2010). (PMID: 10.1074/jbc.M109.059998201599802852933)
      Golubovic, A. et al. A peptide-gated ion channel from the freshwater polyp Hydra. J. Biol. Chem. 282, 35098–35103, https://doi.org/10.1074/jbc.M706849200 (2007). (PMID: 10.1074/jbc.M70684920017911098)
      Wiemuth, D. et al. BASIC–a bile acid-sensitive ion channel highly expressed in bile ducts. FASEB J. 26, 4122–4130, https://doi.org/10.1096/fj.12-207043 (2012). (PMID: 10.1096/fj.12-20704322735174)
      Schaefer, L., Sakai, H., Mattei, M., Lazdunski, M. & Lingueglia, E. Molecular cloning, functional expression and chromosomal localization of an amiloride-sensitive Na(+) channel from human small intestine. FEBS Lett. 471, 205–210 (2000). (PMID: 10.1016/S0014-5793(00)01403-4)
      Sakai, H., Lingueglia, E., Champigny, G., Mattei, M. G. & Lazdunski, M. Cloning and functional expression of a novel degenerin-like Na+ channel gene in mammals. J. Physiol. 519 Pt 2, 323–333 (1999). (PMID: 10.1111/j.1469-7793.1999.0323m.x)
      Wiemuth, D., Sahin, H., Lefevre, C. M., Wasmuth, H. E. & Grunder, S. Strong activation of bile acid-sensitive ion channel (BASIC) by ursodeoxycholic acid. Channels. 7, 38–42, https://doi.org/10.4161/chan.22406 (2013). (PMID: 10.4161/chan.22406230641633589280)
      Boiko, N., Kucher, V., Wang, B. & Stockand, J. D. Restrictive expression of acid-sensing ion channel 5 (asic5) in unipolar brush cells of the vestibulocerebellum. PLoS One 9, e91326, https://doi.org/10.1371/journal.pone.0091326 (2014). (PMID: 10.1371/journal.pone.0091326246638113963869)
      Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171, https://doi.org/10.1016/s0092-8674(00)80086-0 (1996). (PMID: 10.1016/s0092-8674(00)80086-08689683)
      Prut, L. & Belzung, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur. J. Pharmacol. 463, 3–33, https://doi.org/10.1016/s0014-2999(03)01272-x (2003). (PMID: 10.1016/s0014-2999(03)01272-x12600700)
      Seibenhener, M. L. & Wooten, M. C. Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp, e52434, https://doi.org/10.3791/52434 (2015).
      Lu, Y. et al. Neuron-Derived Estrogen Regulates Synaptic Plasticity and Memory. J. Neurosci. 39, 2792–2809, https://doi.org/10.1523/JNEUROSCI.1970-18.2019 (2019). (PMID: 10.1523/JNEUROSCI.1970-18.2019307281706462452)
      Diana, M. A. et al. T-type and L-type Ca2+ conductances define and encode the bimodal firing pattern of vestibulocerebellar unipolar brush cells. J. Neurosci. 27, 3823–3838, https://doi.org/10.1523/JNEUROSCI.4719-06.2007 (2007). (PMID: 10.1523/JNEUROSCI.4719-06.2007174092476672410)
      Becker, E. B. et al. A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice. Proc. Natl Acad. Sci. USA 106, 6706–6711, https://doi.org/10.1073/pnas.0810599106 (2009). (PMID: 10.1073/pnas.081059910619351902)
      Patil, N. et al. A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat. Genet. 11, 126–129, https://doi.org/10.1038/ng1095-126 (1995). (PMID: 10.1038/ng1095-1267550338)
      Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412, https://doi.org/10.1371/journal.pbio.1000412 (2010). (PMID: 10.1371/journal.pbio.1000412206138592893951)
      Pettitt, S. J. et al. Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nat. Methods 6, 493–495, https://doi.org/10.1038/nmeth.1342 (2009). (PMID: 10.1038/nmeth.1342195259573555078)
      Doyle, J. P. et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749–762, https://doi.org/10.1016/j.cell.2008.10.029 (2008). (PMID: 10.1016/j.cell.2008.10.029190132822763427)
      Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nat. 425, 917–925, https://doi.org/10.1038/nature02033 (2003). (PMID: 10.1038/nature02033)
      Tung, V. W., Burton, T. J., Quail, S. L., Mathews, M. A. & Camp, A. J. Motor Performance is Impaired Following Vestibular Stimulation in Ageing Mice. Front. Aging Neurosci. 8, 12, https://doi.org/10.3389/fnagi.2016.00012 (2016). (PMID: 10.3389/fnagi.2016.00012268699214737917)
      Deacon, R. M. Measuring motor coordination in mice. J Vis Exp, e2609, https://doi.org/10.3791/2609 (2013).
      Luong, T. N., Carlisle, H. J., Southwell, A. & Patterson, P. H. Assessment of motor balance and coordination in mice using the balance beam. J Vis Exp, https://doi.org/10.3791/2376 (2011).
      Paylor, R. & Crawley, J. N. Inbred strain differences in prepulse inhibition of the mouse startle response. Psychopharmacol. 132, 169–180, https://doi.org/10.1007/s002130050333 (1997). (PMID: 10.1007/s002130050333)
      Dodt, H. U., Eder, M., Schierloh, A. & Zieglgansberger, W. Infrared-guided laser stimulation of neurons in brain slices. Sci. STKE 2002, pl2, https://doi.org/10.1126/stke.2002.120.pl2 (2002). (PMID: 10.1126/stke.2002.120.pl211854538)
    • Grant Information:
      R01 DK117909 United States DK NIDDK NIH HHS; R01 DK087460 United States DK NIDDK NIH HHS; T32 HL007446 United States HL NHLBI NIH HHS; R01 DK113816 United States DK NIDDK NIH HHS; R01 NS092809 United States NS NINDS NIH HHS
    • الرقم المعرف:
      0 (Acid Sensing Ion Channels)
      0 (Asic5 protein, mouse)
      3KX376GY7L (Glutamic Acid)
      RWP5GA015D (Potassium)
    • الموضوع:
      Date Created: 20200209 Date Completed: 20201110 Latest Revision: 20210206
    • الموضوع:
      20250114
    • الرقم المعرف:
      PMC7005805
    • الرقم المعرف:
      10.1038/s41598-020-58901-y
    • الرقم المعرف:
      32034189