References: Carlson, K. M., Andresen, J. M. & Orr, H. T. Emerging pathogenic pathways in the spinocerebellar ataxias. Curr. Opin. Genet. Dev. 19, 247–253, https://doi.org/10.1016/j.gde.2009.02.009 (2009). (PMID: 10.1016/j.gde.2009.02.009193450872721007)
Hartmann, J. et al. TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59, 392–398, https://doi.org/10.1016/j.neuron.2008.06.009 (2008). (PMID: 10.1016/j.neuron.2008.06.009187010652643468)
Lalonde, R. & Strazielle, C. Spontaneous and induced mouse mutations with cerebellar dysfunctions: behavior and neurochemistry. Brain Res. 1140, 51–74, https://doi.org/10.1016/j.brainres.2006.01.031 (2007). (PMID: 10.1016/j.brainres.2006.01.03116499884)
Mugnaini, E., Sekerkova, G. & Martina, M. The unipolar brush cell: a remarkable neuron finally receiving deserved attention. Brain Res. Rev. 66, 220–245, https://doi.org/10.1016/j.brainresrev.2010.10.001 (2011). (PMID: 10.1016/j.brainresrev.2010.10.00120937306)
van Dorp, S. & De Zeeuw, C. I. Forward signaling by unipolar brush cells in the mouse cerebellum. Cerebellum 14, 528–533, https://doi.org/10.1007/s12311-015-0693-5 (2015). (PMID: 10.1007/s12311-015-0693-5261297144612437)
Kim, J. A., Sekerkova, G., Mugnaini, E. & Martina, M. Electrophysiological, morphological, and topological properties of two histochemically distinct subpopulations of cerebellar unipolar brush cells. Cerebellum 11, 1012–1025, https://doi.org/10.1007/s12311-012-0380-8 (2012). (PMID: 10.1007/s12311-012-0380-8225289653478498)
Nunzi, M. G., Shigemoto, R. & Mugnaini, E. Differential expression of calretinin and metabotropic glutamate receptor mGluR1alpha defines subsets of unipolar brush cells in mouse cerebellum. J. Comp. Neurol. 451, 189–199, https://doi.org/10.1002/cne.10344 (2002). (PMID: 10.1002/cne.1034412209836)
Sekerkova, G., Watanabe, M., Martina, M. & Mugnaini, E. Differential distribution of phospholipase C beta isoforms and diaglycerol kinase-beta in rodents cerebella corroborates the division of unipolar brush cells into two major subtypes. Brain Struct. Funct. 219, 719–749, https://doi.org/10.1007/s00429-013-0531-9 (2014). (PMID: 10.1007/s00429-013-0531-923503970)
Borges-Merjane, C. & Trussell, L. O. ON and OFF unipolar brush cells transform multisensory inputs to the auditory system. Neuron 85, 1029–1042, https://doi.org/10.1016/j.neuron.2015.02.009 (2015). (PMID: 10.1016/j.neuron.2015.02.009257417274370778)
van Dorp, S. & De Zeeuw, C. I. Variable timing of synaptic transmission in cerebellar unipolar brush cells. Proc. Natl Acad. Sci. USA 111, 5403–5408, https://doi.org/10.1073/pnas.1314219111 (2014). (PMID: 10.1073/pnas.131421911124706875)
Zampini, V. et al. Mechanisms and functional roles of glutamatergic synapse diversity in a cerebellar circuit. Elife 5, https://doi.org/10.7554/eLife.15872 (2016).
Rice, D. S. et al. Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organization in the mammalian brain. Dev. 125, 3719–3729 (1998).
Manto, M. & Marmolino, D. Animal models of human cerebellar ataxias: a cornerstone for the therapies of the twenty-first century. Cerebellum 8, 137–154, https://doi.org/10.1007/s12311-009-0127-3 (2009). (PMID: 10.1007/s12311-009-0127-319669387)
Becker, E. B. The Moonwalker mouse: new insights into TRPC3 function, cerebellar development, and ataxia. Cerebellum 13, 628–636, https://doi.org/10.1007/s12311-014-0564-5 (2014). (PMID: 10.1007/s12311-014-0564-5247972794155175)
Ilijic, E., Guidotti, A. & Mugnaini, E. Moving up or moving down? Malpositioned cerebellar unipolar brush cells in reeler mouse. Neurosci. 136, 633–647, https://doi.org/10.1016/j.neuroscience.2005.01.030 (2005). (PMID: 10.1016/j.neuroscience.2005.01.030)
Sekerkova, G. et al. Early onset of ataxia in moonwalker mice is accompanied by complete ablation of type II unipolar brush cells and Purkinje cell dysfunction. J. Neurosci. 33, 19689–19694, https://doi.org/10.1523/JNEUROSCI.2294-13.2013 (2013). (PMID: 10.1523/JNEUROSCI.2294-13.2013243367323858636)
Chalfie, M., Driscoll, M. & Huang, M. Degenerin similarities. Nat. 361, 504, https://doi.org/10.1038/361504a0 (1993). (PMID: 10.1038/361504a0)
Askwith, C. C., Benson, C. J., Welsh, M. J. & Snyder, P. M. DEG/ENaC ion channels involved in sensory transduction are modulated by cold temperature. Proc. Natl Acad. Sci. USA 98, 6459–6463, https://doi.org/10.1073/pnas.111155398 (2001). (PMID: 10.1073/pnas.11115539811353858)
Askwith, C. C. et al. Neuropeptide FF and FMRFamide potentiate acid-evoked currents from sensory neurons and proton-gated DEG/ENaC channels. Neuron 26, 133–141 (2000). (PMID: 10.1016/S0896-6273(00)81144-7)
Huang, Y. et al. Two aspects of ASIC function: Synaptic plasticity and neuronal injury. Neuropharmacol. 94, 42–48, https://doi.org/10.1016/j.neuropharm.2014.12.010 (2015). (PMID: 10.1016/j.neuropharm.2014.12.010)
Chiang, P.-H. et al. at multiple glutamatergic synapses in amygdala network is required for fear memory. Sci. Rep. 5, 10143, https://doi.org/10.1038/srep10143 (2015). (PMID: 10.1038/srep10143259883574437300)
Boscardin, E., Alijevic, O., Hummler, E., Frateschi, S. & Kellenberger, S. The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC): IUPHAR Review 19. Br. J. Pharmacol. 173, 2671–2701, https://doi.org/10.1111/bph.13533 (2016). (PMID: 10.1111/bph.13533272783294995293)
Durrnagel, S. et al. Three homologous subunits form a high affinity peptide-gated ion channel in Hydra. J. Biol. Chem. 285, 11958–11965, https://doi.org/10.1074/jbc.M109.059998 (2010). (PMID: 10.1074/jbc.M109.059998201599802852933)
Golubovic, A. et al. A peptide-gated ion channel from the freshwater polyp Hydra. J. Biol. Chem. 282, 35098–35103, https://doi.org/10.1074/jbc.M706849200 (2007). (PMID: 10.1074/jbc.M70684920017911098)
Wiemuth, D. et al. BASIC–a bile acid-sensitive ion channel highly expressed in bile ducts. FASEB J. 26, 4122–4130, https://doi.org/10.1096/fj.12-207043 (2012). (PMID: 10.1096/fj.12-20704322735174)
Schaefer, L., Sakai, H., Mattei, M., Lazdunski, M. & Lingueglia, E. Molecular cloning, functional expression and chromosomal localization of an amiloride-sensitive Na(+) channel from human small intestine. FEBS Lett. 471, 205–210 (2000). (PMID: 10.1016/S0014-5793(00)01403-4)
Sakai, H., Lingueglia, E., Champigny, G., Mattei, M. G. & Lazdunski, M. Cloning and functional expression of a novel degenerin-like Na+ channel gene in mammals. J. Physiol. 519 Pt 2, 323–333 (1999). (PMID: 10.1111/j.1469-7793.1999.0323m.x)
Wiemuth, D., Sahin, H., Lefevre, C. M., Wasmuth, H. E. & Grunder, S. Strong activation of bile acid-sensitive ion channel (BASIC) by ursodeoxycholic acid. Channels. 7, 38–42, https://doi.org/10.4161/chan.22406 (2013). (PMID: 10.4161/chan.22406230641633589280)
Boiko, N., Kucher, V., Wang, B. & Stockand, J. D. Restrictive expression of acid-sensing ion channel 5 (asic5) in unipolar brush cells of the vestibulocerebellum. PLoS One 9, e91326, https://doi.org/10.1371/journal.pone.0091326 (2014). (PMID: 10.1371/journal.pone.0091326246638113963869)
Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171, https://doi.org/10.1016/s0092-8674(00)80086-0 (1996). (PMID: 10.1016/s0092-8674(00)80086-08689683)
Prut, L. & Belzung, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur. J. Pharmacol. 463, 3–33, https://doi.org/10.1016/s0014-2999(03)01272-x (2003). (PMID: 10.1016/s0014-2999(03)01272-x12600700)
Seibenhener, M. L. & Wooten, M. C. Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp, e52434, https://doi.org/10.3791/52434 (2015).
Lu, Y. et al. Neuron-Derived Estrogen Regulates Synaptic Plasticity and Memory. J. Neurosci. 39, 2792–2809, https://doi.org/10.1523/JNEUROSCI.1970-18.2019 (2019). (PMID: 10.1523/JNEUROSCI.1970-18.2019307281706462452)
Diana, M. A. et al. T-type and L-type Ca2+ conductances define and encode the bimodal firing pattern of vestibulocerebellar unipolar brush cells. J. Neurosci. 27, 3823–3838, https://doi.org/10.1523/JNEUROSCI.4719-06.2007 (2007). (PMID: 10.1523/JNEUROSCI.4719-06.2007174092476672410)
Becker, E. B. et al. A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice. Proc. Natl Acad. Sci. USA 106, 6706–6711, https://doi.org/10.1073/pnas.0810599106 (2009). (PMID: 10.1073/pnas.081059910619351902)
Patil, N. et al. A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat. Genet. 11, 126–129, https://doi.org/10.1038/ng1095-126 (1995). (PMID: 10.1038/ng1095-1267550338)
Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412, https://doi.org/10.1371/journal.pbio.1000412 (2010). (PMID: 10.1371/journal.pbio.1000412206138592893951)
Pettitt, S. J. et al. Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nat. Methods 6, 493–495, https://doi.org/10.1038/nmeth.1342 (2009). (PMID: 10.1038/nmeth.1342195259573555078)
Doyle, J. P. et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749–762, https://doi.org/10.1016/j.cell.2008.10.029 (2008). (PMID: 10.1016/j.cell.2008.10.029190132822763427)
Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nat. 425, 917–925, https://doi.org/10.1038/nature02033 (2003). (PMID: 10.1038/nature02033)
Tung, V. W., Burton, T. J., Quail, S. L., Mathews, M. A. & Camp, A. J. Motor Performance is Impaired Following Vestibular Stimulation in Ageing Mice. Front. Aging Neurosci. 8, 12, https://doi.org/10.3389/fnagi.2016.00012 (2016). (PMID: 10.3389/fnagi.2016.00012268699214737917)
Deacon, R. M. Measuring motor coordination in mice. J Vis Exp, e2609, https://doi.org/10.3791/2609 (2013).
Luong, T. N., Carlisle, H. J., Southwell, A. & Patterson, P. H. Assessment of motor balance and coordination in mice using the balance beam. J Vis Exp, https://doi.org/10.3791/2376 (2011).
Paylor, R. & Crawley, J. N. Inbred strain differences in prepulse inhibition of the mouse startle response. Psychopharmacol. 132, 169–180, https://doi.org/10.1007/s002130050333 (1997). (PMID: 10.1007/s002130050333)
Dodt, H. U., Eder, M., Schierloh, A. & Zieglgansberger, W. Infrared-guided laser stimulation of neurons in brain slices. Sci. STKE 2002, pl2, https://doi.org/10.1126/stke.2002.120.pl2 (2002). (PMID: 10.1126/stke.2002.120.pl211854538)
No Comments.