Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Binding of myeloperoxidase to the extracellular matrix of smooth muscle cells and subsequent matrix modification.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      The extracellular matrix (ECM) of tissues is susceptible to modification by inflammation-associated oxidants. Considerable data support a role for hypochlorous acid (HOCl), generated by the leukocyte-derived heme-protein myeloperoxidase (MPO) in these changes. HOCl can modify isolated ECM proteins and cell-derived matrix, with this resulting in decreased cell adhesion, modulated proliferation and gene expression, and phenotypic changes. Whether this arises from free HOCl, or via site-specific reactions is unresolved. Here we examine the mechanisms of MPO-mediated changes to human coronary smooth muscle cell ECM. MPO is shown to co-localize with matrix fibronectin as detected by confocal microscopy, and bound active MPO can initiate ECM modification, as detected by decreased antibody recognition of fibronectin, versican and type IV collagen, and formation of protein carbonyls and HOCl-mediated damage. These changes are recapitulated by a glucose/glucose oxidase/MPO system where low continuous fluxes of H 2 O 2 are generated. HOCl-induced modifications enhance MPO binding to ECM proteins as detected by ELISA and MPO activity measurements. These data demonstrate that MPO-generated HOCl induces ECM modification by interacting with ECM proteins in a site-specific manner, and generates alterations that increase MPO adhesion. This is proposed to give rise to an increasing cycle of alterations that contribute to tissue damage.
    • References:
      Wight, T. N. In Extracellular Matrix Vol. 1 (ed. Comper, W. D.) pp. 175–202 (Harwood Academic Publishers, 1996).
      Chuang, C. Y., Degendorfer, G. & Davies, M. J. Oxidation and modification of extracellular matrix and its role in disease. Free. Radic. Res. 48, 970–989, https://doi.org/10.3109/10715762.2014.920087 (2014). (PMID: 10.3109/10715762.2014.92008724796988)
      Nissen, R., Cardinale, G. J. & Udenfriend, S. Increased turnover of arterial collagen in hypertensive rats. Proc. Natl Acad. Sci. USA 75, 451–453 (1978). (PMID: 10.1073/pnas.75.1.451)
      Shapiro, S. D., Endicott, S. K., Province, M. A., Pierce, J. A. & Campbell, E. J. Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of D-aspartate and nuclear weapons-related radiocarbon. J. Clin. Invest. 87, 1828–1834, https://doi.org/10.1172/JCI115204 (1991). (PMID: 10.1172/JCI1152042022748295305)
      Halliwell, B. & Gutteridge, J. M. The antioxidants of human extracellular fluids. Arch. Biochem. Biophys. 280, 1–8 (1990). (PMID: 10.1016/0003-9861(90)90510-6)
      Rees, M. D., Kennett, E. C., Whitelock, J. M. & Davies, M. J. Oxidative damage to extracellular matrix and its role in human pathologies. Free. Radic. Biol. Med. 44, 1973–2001, https://doi.org/10.1016/j.freeradbiomed.2008.03.016 (2008). (PMID: 10.1016/j.freeradbiomed.2008.03.01618423414)
      Woods, A. A., Linton, S. M. & Davies, M. J. Detection of HOCl-mediated protein oxidation products in the extracellular matrix of human atherosclerotic plaques. Biochem. J. 370, 729–735 (2003). (PMID: 10.1042/bj20021710)
      Libby, P., Ridker, P. M. & Hansson, G. K. Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317–325, https://doi.org/10.1038/nature10146 (2011). (PMID: 10.1038/nature1014621593864)
      Fischer, G. M. & Llaurado, J. G. Collagen and elastin content in canine arteries selected from functionally different vascular beds. Circ. Res. 19, 394–399 (1966). (PMID: 10.1161/01.RES.19.2.394)
      Fu, S., Davies, M. J., Stocker, R. & Dean, R. T. Evidence for roles of radicals in protein oxidation in advanced human atherosclerotic plaque. Biochem. J. 333, 519–525 (1998). (PMID: 10.1042/bj3330519)
      Stadler, N., Lindner, R. A. & Davies, M. J. Direct detection and quantification of transition metal ions in human atherosclerotic plaques: evidence for the presence of elevated levels of iron and copper. Arterioscler. Thromb. Vasc. Biol. 24, 949–954 (2004). (PMID: 10.1161/01.ATV.0000124892.90999.cb)
      Stanley, N., Stadler, N., Woods, A. A., Bannon, P. G. & Davies, M. J. Concentrations of iron correlate with the extent of protein, but not lipid, oxidation in advanced human atherosclerotic lesions. Free. Radic. Biol. Med. 40, 1636–1643 (2006). (PMID: 10.1016/j.freeradbiomed.2005.12.031)
      Beckman, J. S. et al. Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol. Chem. Hoppe-Seyler 375, 81–88 (1994). (PMID: 10.1515/bchm3.1994.375.2.81)
      Leeuwenburgh, C. et al. Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J. Biol. Chem. 272, 1433–1436 (1997). (PMID: 10.1074/jbc.272.3.1433)
      Degendorfer, G., Chuang, C. Y., Hammer, A., Malle, E. & Davies, M. J. Peroxynitrous acid induces structural and functional modifications to basement membranes and its key component, laminin. Free. Radic. Biol. Med. 89, 721–733, https://doi.org/10.1016/j.freeradbiomed.2015.09.018 (2015). (PMID: 10.1016/j.freeradbiomed.2015.09.01826453917)
      Degendorfer, G. et al. Peroxynitrite-mediated oxidation of plasma fibronectin. Free. Radic. Biol. Med. 97, 602–615, https://doi.org/10.1016/j.freeradbiomed.2016.06.013 (2016). (PMID: 10.1016/j.freeradbiomed.2016.06.01327396946)
      Hazen, S. L. & Heinecke, J. W. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J. Clin. Invest. 99, 2075–2081, https://doi.org/10.1172/JCI119379 (1997). (PMID: 10.1172/JCI1193799151778508036)
      Hazell, L. J. et al. Presence of hypochlorite-modified proteins in human atherosclerotic lesions. J. Clin. Invest. 97, 1535–1544, https://doi.org/10.1172/JCI118576 (1996). (PMID: 10.1172/JCI1185768617887507214)
      Hazell, L. J., Baernthaler, G. & Stocker, R. Correlation between intima-to-media ratio, apolipoprotein B-100, myeloperoxidase, and hypochlorite-oxidized proteins in human atherosclerosis. Free. Radic. Biol. Med. 31, 1254–1262 (2001). (PMID: 10.1016/S0891-5849(01)00717-1)
      Vanichkitrungruang, S., Chuang, C. Y. & Davies, M. J. Oxidation of human plasma fibronectin by hypochlorous (HOCl) and hypothiocyanous (HOSCN) acids perturbs endothelial cell function. Free. Radic. Biol. Med. 136, 118–134 (2018). (PMID: 10.1016/j.freeradbiomed.2019.04.003)
      Takeshita, J. et al. Myeloperoxidase generates 5-chlorouracil in human atherosclerotics tissue: A potential pathway for somatic mutagenesis by macrophages. J. Biol. Chem. 281, 3096–3104 (2005). (PMID: 10.1074/jbc.M509236200)
      Shao, B., Pennathur, S. & Heinecke, J. W. Myeloperoxidase targets apolipoprotein A-I, the major high density lipoprotein protein, for site-specific oxidation in human atherosclerotic lesions. J. Biol. Chem. 287, 6375–6386, https://doi.org/10.1074/jbc.M111.337345 (2012). (PMID: 10.1074/jbc.M111.337345222191943307260)
      Davies, M. J., Hawkins, C. L., Pattison, D. I. & Rees, M. D. Mammalian heme peroxidases: from molecular mechanisms to health implications. Antioxid. Redox Signal. 10, 1199–1234, https://doi.org/10.1089/ars.2007.1927 (2008). (PMID: 10.1089/ars.2007.192718331199)
      Daugherty, A., Dunn, J. L., Rateri, D. L. & Heinecke, J. W. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J. Clin. Invest. 94, 437–444, https://doi.org/10.1172/Jci117342 (1994). (PMID: 10.1172/Jci1173428040285296328)
      Malle, E. et al. Immunohistochemical evidence for the myeloperoxidase/H 2 O 2 /halide system in human atherosclerotic lesions: colocalization of myeloperoxidase and hypochlorite-modified proteins. Eur. J. Biochem/FEBS 267, 4495–4503 (2000). (PMID: 10.1046/j.1432-1327.2000.01498.x)
      Baldus, S. et al. Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation 108, 1440–1445, https://doi.org/10.1161/01.CIR.0000090690.67322.51 . (PMID: 10.1161/01.CIR.0000090690.67322.51)
      Nussbaum, C., Klinke, A., Adam, M., Baldus, S. & Sperandio, M. Myeloperoxidase: a leukocyte-derived protagonist of inflammation and cardiovascular disease. Antioxid. Redox Signal. 18, 692–713, https://doi.org/10.1089/ars.2012.4783 (2013). (PMID: 10.1089/ars.2012.478322823200)
      Tang, W. H. et al. Usefulness of myeloperoxidase levels in healthy elderly subjects to predict risk of developing heart failure. Am. J. Cardiol. 103, 1269–1274, https://doi.org/10.1016/j.amjcard.2009.01.026 (2009). (PMID: 10.1016/j.amjcard.2009.01.026194062702714047)
      Baldus, S. et al. Spatial mapping of pulmonary and vascular nitrotyrosine reveals the pivotal role of myeloperoxidase as a catalyst for tyrosine nitration in inflammatory diseases. Free. Radic. Biol. Med. 33, 1010–1019 (2002). (PMID: 10.1016/S0891-5849(02)00993-0)
      Kubala, L. et al. The potentiation of myeloperoxidase activity by the glycosaminoglycan-dependent binding of myeloperoxidase to proteins of the extracellular matrix. Biochim. Biophys. Acta 1830, 4524–4536, https://doi.org/10.1016/j.bbagen.2013.05.024 (2013). (PMID: 10.1016/j.bbagen.2013.05.02423707661)
      Rees, M. D. et al. Myeloperoxidase-derived oxidants selectively disrupt the protein core of the heparan sulfate proteoglycan perlecan. Matrix Biol. 29, 63–73, https://doi.org/10.1016/j.matbio.2009.09.005 (2010). (PMID: 10.1016/j.matbio.2009.09.00519788922)
      Baldus, S. et al. Heparins increase endothelial nitric oxide bioavailability by liberating vessel-immobilized myeloperoxidase. Circulation 113, 1871–1878, https://doi.org/10.1161/CIRCULATIONAHA.105.590083 (2006). (PMID: 10.1161/CIRCULATIONAHA.105.59008316606792)
      Manchanda, K. et al. MPO (Myeloperoxidase) Reduces endothelial glycocalyx thickness dependent on its cationic charge. Arterioscler. Thromb. Vasc. Biol. 38, 1859–1867 (2018). (PMID: 10.1161/ATVBAHA.118.311143)
      Zouaoui Boudjeltia, K. et al. Oxidation of low density lipoproteins by myeloperoxidase at the surface of endothelial cells: an additional mechanism to subendothelium oxidation. Biochem. Biophys. Res. Commun. 325, 434–438, https://doi.org/10.1016/j.bbrc.2004.10.049 (2004). (PMID: 10.1016/j.bbrc.2004.10.04915530411)
      Stefanadis, C., Antoniou, C. K., Tsiachris, D. & Pietri, P. Coronary atherosclerotic vulnerable plaque: current perspectives. J Am Heart Assoc 6, https://doi.org/10.1161/JAHA.117.005543 (2017).
      Teng, N. et al. The roles of myeloperoxidase in coronary artery disease and its potential implication in plaque rupture. Redox Rep. 22, 51–73, https://doi.org/10.1080/13510002.2016.1256119 (2017). (PMID: 10.1080/13510002.2016.125611927884085)
      Goldmann, B. U. et al. Neutrophil activation precedes myocardial injury in patients with acute myocardial infarction. Free. Radic. Biol. Med. 47, 79–83, https://doi.org/10.1016/j.freeradbiomed.2009.04.004 (2009). (PMID: 10.1016/j.freeradbiomed.2009.04.00419362143)
      Sugiyama, S. et al. Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am. J. Pathol. 158, 879–891, https://doi.org/10.1016/S0002-9440(10)64036-9 (2001). (PMID: 10.1016/S0002-9440(10)64036-9112380371850342)
      Döring, Y., Drechsler, M., Soehnlein, O. & Weber, C. Neutrophils in Atherosclerosis: From Mice to Man. Arterioscler. Thromb. Vasc. Biol. 35, 288–295 (2015). (PMID: 10.1161/ATVBAHA.114.303564)
      Nybo, T. et al. Chlorination and oxidation of human plasma fibronectin by myeloperoxidase-derived oxidants, and its consequences for smooth muscle cell function. Redox Biol. 19, 388–400, https://doi.org/10.1016/j.redox.2018.09.005 (2018). (PMID: 10.1016/j.redox.2018.09.005302371276142189)
      Lu, H., Hoshiba, T., Kawazoe, N. & Chen, G. Comparison of decellularization techniques for preparation of extracellular matrix scaffolds derived from three-dimensional cell culture. J. Biomed. Mater. Res. A 100, 2507–2516 (2012). (PMID: 22623317)
      Mayorca-Guiliani, A. E. et al. ISDoT: in situ decellularization of tissues for high-resolution imaging and proteomic analysis of native extracellular matrix. Nat. Med. 23, 890–898, https://doi.org/10.1038/nm.4352 (2017). (PMID: 10.1038/nm.435228604702)
      Cai, H., Chuang, C. Y., Vanichkitrungruang, S., Hawkins, C. L. & Davies, M. J. Hypochlorous acid-modified extracellular matrix contributes to the behavioral switching of human coronary artery smooth muscle cells. Free. Radic. Biol. Med. 134, 516–526, https://doi.org/10.1016/j.freeradbiomed.2019.01.044 (2019). (PMID: 10.1016/j.freeradbiomed.2019.01.04430716431)
      Dypbukt, J. M. et al. A sensitive and selective assay for chloramine production by myeloperoxidase. Free. Radic. Biol. Med. 39, 1468–1477 (2005). (PMID: 10.1016/j.freeradbiomed.2005.07.008)
      Hawkins, C. L. & Davies, M. J. Hypochlorite-induced damage to proteins: formation of nitrogen-centred radicals from lysine residues and their role in protein fragmentation. Biochem. J. 332, 617–625 (1998). (PMID: 10.1042/bj3320617)
      Tiwari, M. K. et al. Early events in copper-ion catalyzed oxidation of α-synuclein. Free. Radic. Biol. Med. 121, 38–50 (2018). (PMID: 10.1016/j.freeradbiomed.2018.04.559)
      Forman, H. J., Bernardo, A. & Davies, K. J. A. What is the concentration of hydrogen peroxide in blood and plasma? (vol 603, pg 48, 2016). Arch. Biochem. Biophys. 603, 48–53, https://doi.org/10.1016/j.abb.2016.08.011 (2016). (PMID: 10.1016/j.abb.2016.08.01127173735)
      Stocker, R. & Keaney, J. F. Jr. Role of oxidative modifications in atherosclerosis. Physiol. Rev. 84, 1381–1478, https://doi.org/10.1152/physrev.00047.2003 (2004). (PMID: 10.1152/physrev.00047.200315383655)
      Klebanoff, S. J., Kettle, A. J., Rosen, H., Winterbourn, C. C. & Nauseef, W. M. Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J. Leukoc. Biol. 93, 185–198, https://doi.org/10.1189/jlb.0712349 (2013). (PMID: 10.1189/jlb.0712349230661643545676)
      Vartio, T. Regular fragmentation of hydrogen peroxide-treated fibronectin. J. Biol. Chem. 264, 4471–4475 (1989). (PMID: 2538445)
      Pattison, D. I. & Davies, M. J. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem. Res. Toxicol. 14, 1453–1464 (2001). (PMID: 10.1021/tx0155451)
      Pattison, D. I. & Davies, M. J. Reactions of myeloperoxidase-derived oxidants with biological substrates: gaining insight into human inflammatory diseases. Curr. Med. Chem. 13, 3271–3290 (2006). (PMID: 10.2174/092986706778773095)
      Hawkins, C. L., Pattison, D. I. & Davies, M. J. Hypochlorite-induced oxidation of amino acids, peptides and proteins. Amino Acids 25, 259–274 (2003). (PMID: 10.1007/s00726-003-0016-x)
      Fuentes-Lemus, E. et al. Aggregation of alpha- and beta- caseins induced by peroxyl radicals involves secondary reactions of carbonyl compounds as well as di-tyrosine and di-tryptophan formation. Free. Radic. Biol. Med. 124, 176–188, https://doi.org/10.1016/j.freeradbiomed.2018.06.005 (2018). (PMID: 10.1016/j.freeradbiomed.2018.06.00529885785)
      Nybo, T. et al. Chlorination and oxidation of the extracellular matrix protein laminin and basement membrane extracts by hypochlorous acid and myeloperoxidase. Redox Biol. 20, 496–513 (2019). (PMID: 10.1016/j.redox.2018.10.022)
      Noble, R. W. & Gibson, Q. H. The reaction of ferrous horseradish peroxidase with hydrogen peroxide. J. Biol. Chem. 245, 2409–2413 (1970). (PMID: 5442280)
      Morris, J. C. The acid ionization constant of HOCl from 5 °C to 35 °C. J. Phys. Chem. 70, 3798–3805 (1966). (PMID: 10.1021/j100884a007)
    • الرقم المعرف:
      0 (Extracellular Matrix Proteins)
      0 (Fibronectins)
      126968-45-4 (Versicans)
      712K4CDC10 (Hypochlorous Acid)
      9007-34-5 (Collagen)
      EC 1.11.1.7 (Peroxidase)
    • الموضوع:
      Date Created: 20200122 Date Completed: 20201130 Latest Revision: 20210119
    • الموضوع:
      20231215
    • الرقم المعرف:
      PMC6971288
    • الرقم المعرف:
      10.1038/s41598-019-57299-6
    • الرقم المعرف:
      31959784