Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Nitric oxide: To be or not to be an endocrine hormone?

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 101262545 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1748-1716 (Electronic) Linking ISSN: 17481708 NLM ISO Abbreviation: Acta Physiol (Oxf) Subsets: MEDLINE
    • بيانات النشر:
      Publication: Oxford : Wiley-Blackwell
      Original Publication: Oxford : Blackwell Pub., c2006-4
    • الموضوع:
    • نبذة مختصرة :
      Nitric oxide (NO), a highly reactive gasotransmitter, is critical for a number of cellular processes and has multiple biological functions. Due to its limited lifetime and diffusion distance, NO has been mainly believed to act in autocrine/paracrine fashion. The increasingly recognized effects of pharmacologically delivered and endogenous NO at a distant site have changed the conventional wisdom and introduced NO as an endocrine signalling molecule. The notion is greatly supported by the detection of a number of NO adducts and their circulatory cycles, which in turn contribute to the transport and delivery of NO bioactivity, remote from the sites of its synthesis. The existence of endocrine sites of synthesis, negative feedback regulation of biosynthesis, integrated storage and transport systems, having an exclusive receptor, that is, soluble guanylyl cyclase (sGC), and organized circadian rhythmicity make NO something beyond a simple autocrine/paracrine signalling molecule that could qualify for being an endocrine signalling molecule. Here, we discuss hormonal features of NO from the classical endocrine point of view and review available knowledge supporting NO as a true endocrine hormone. This new insight can provide a new framework within which to reinterpret NO biology and its clinical applications.
      (© 2020 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.)
    • References:
      Murad F. Discovery of some of the biological effects of nitric oxide and its role in cell signaling. Biosci Rep. 2004;24(4-5):452-474.
      Ghasemi A, Zahedi AS. Is nitric oxide a hormone? Iran Biomed J. 2011;15:59-65.
      Zhao Y, Brandish PE, Ballou DP, Marletta MA. A molecular basis for nitric oxide sensing by soluble guanylate cyclase. Proc Natl Acad Sci. 1999;96(26):14753-14758.
      Bredt DS. Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radical Res. 1999;31(6):577-596.
      Kirkeby OJ, Kutzsche S, Risöe C, Rise IR. Cerebral nitric oxide concentration and microcirculation during hypercapnia, hypoxia, and high intracranial pressure in pigs. J Clin Neurosci. 2000;7(6):531-538.
      Troncy E, Francoeur M, Salazkin I, et al. Extra-pulmonary effects of inhaled nitric oxide in swine with and without phenylephrine. Br J Anaesth. 1997;79(5):631-640.
      Gatecel C, Mebazaa A, Kong R, et al. Inhaled nitric oxide improves hepatic tissue oxygenation in right ventricular failure: value of hepatic venous oxygen saturation monitoring. Anesthesiology. 1995;82(2):588-590.
      Beghetti M, Sparling C, Cox PN, Stephens D, Adatia I. Inhaled NO inhibits platelet aggregation and elevates plasma but not intraplatelet cGMP in healthy human volunteers. Am J Physiol Heart Circ Physiol. 2003;285(2):H637-H642.
      Fox-Robichaud A, Payne D, Hasan SU, et al. Inhaled NO as a viable antiadhesive therapy for ischemia/reperfusion injury of distal microvascular beds. J Clin Investig. 1998;101(11):2497-2505.
      Cannon RO, Schechter AN, Panza JA, et al. Effects of inhaled nitric oxide on regional blood flow are consistent with intravascular nitric oxide delivery. J Clin Investig. 2001;108(2):279-287.
      Opländer C, Volkmar CM, Paunel-Görgülü A, et al. Whole body UVA irradiation lowers systemic blood pressure by release of nitric oxide from intracutaneous photolabile nitric oxide derivates. Circ Res. 2009;105(10):1031-1040.
      Elrod JW, Calvert JW, Gundewar S, Bryan NS, Lefer DJ. Nitric oxide promotes distant organ protection: evidence for an endocrine role of nitric oxide. Proc Natl Acad Sci. 2008;105(32):11430-11435.
      Henderson J. Ernest Starling and 'Hormones': an historical commentary. J Endocrinol. 2005;184(1):5-10.
      Medvei VC. A History of Endocrinology, Vol I. Netherlands: Springer; 1982.
      Bahadoran Z, Mirmiran P, Azizi F, Ghasemi A. A brief history of modern endocrinology and definitions of a true hormone. Endocr Metab Immune Disord Drug Targets. 2019;19(8):1116-1121.
      Melmed S. Williams Textbook of Endocrinology. Philadelphia, PA: Elsevier Health Sciences. 2016.
      Huxley JS. Chemical regulation and the hormone concept. Biol Rev. 1935;10(4):427-441.
      Kelm M. Nitric oxide metabolism and breakdown. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1999;1411(2-3):273-289.
      Castillo L, Beaumier L, Ajami AM, Young VR. Whole body nitric oxide synthesis in healthy men determined from [15N] arginine-to-[15N]citrulline labeling. Proc Natl Acad Sci USA. 1996;93(21):11460-11465.
      Chen K, Pittman RN, Popel AS. Nitric oxide in the vasculature: where does it come from and where does it go? A quantitative perspective. Antioxid Redox Signal. 2008;10(7):1185-1198.
      Chen K, Popel AS. Theoretical analysis of biochemical pathways of nitric oxide release from vascular endothelial cells. Free Radic Biol Med. 2006;41(4):668-680.
      Chen K, Popel AS. Vascular and perivascular nitric oxide release and transport: biochemical pathways of neuronal nitric oxide synthase (NOS1) and endothelial nitric oxide synthase (NOS3). Free Radic Biol Med. 2007;42(6):811-822.
      Wood KC, Cortese-Krott MM, Kovacic JC, et al. Circulating blood endothelial nitric oxide synthase contributes to the regulation of systemic blood pressure and nitrite homeostasis. Arterioscler Thromb Vasc Biol. 2013;33(8):1861-1871.
      Robinson JM, Lancaster JR Jr. Hemoglobin-mediated, hypoxia-induced vasodilation via nitric oxide: mechanism(s) and physiologic versus pathophysiologic relevance. Am J Respir Cell Mol Biol. 2005;32(4):257-261.
      Kavdia M, Popel AS. Contribution of nNOS- and eNOS-derived NO to microvascular smooth muscle NO exposure. J Appl Physiol (1985). 2004;97(1):293-301.
      Cortese-Krott MM, Kelm M. Endothelial nitric oxide synthase in red blood cells: key to a new erythrocrine function? Redox Biol. 2014;2:251-258.
      Cortese-Krott MM, Rodriguez-Mateos A, Sansone R, et al. Human red blood cells at work: identification and visualization of erythrocytic eNOS activity in health and disease. Blood. 2012;120(20):4229-4237.
      Kim-Shapiro DB, Schechter AN, Gladwin MT. Unraveling the reactions of nitric oxide, nitrite, and hemoglobin in physiology and therapeutics. Arterioscler Thromb Vasc Biol. 2006;26(4):697-705.
      Yang J, Gonon AT, Sjöquist PO, Lundberg JO, Pernow J. Arginase regulates formation and export of cardioprotective nitric oxide bioactivity from red blood cells. Eur Heart J. 2013;34(suppl 1):767-767.
      Chen LY, Mehta JL. Evidence for the presence of L-arginine-nitric oxide pathway in human red blood cells: relevance in the effects of red blood cells on platelet function. J Cardiovasc Pharmacol. 1998;32(1):57-61.
      Ulker P, Sati L, Celik-Ozenci C, Meiselman HJ, Baskurt OK. Mechanical stimulation of nitric oxide synthesizing mechanisms in erythrocytes. Biorheology. 2009;46(2):121-132.
      Yang BC, Nichols WW, Mehta JL. Cardioprotective effects of red blood cells on ischemia and reperfusion injury in isolated rat heart: release of nitric oxide as a potential mechanism. J Cardiovasc Pharmacol Ther. 1996;1(4):297-306.
      Ii M, Nishimura H, Iwakura A, et al. Endothelial progenitor cells are rapidly recruited to myocardium and mediate protective effect of ischemic preconditioning via "imported" nitric oxide synthase activity. Circulation. 2005;111(9):1114-1120.
      Zhou Z, Mahdi A, Tratsiakovich Y, et al. Erythrocytes from patients with type 2 diabetes induce endothelial dysfunction via arginase I. J Am Coll Cardiol. 2018;72(7):769-780.
      Cals-Grierson MM, Ormerod AD. Nitric oxide function in the skin. Nitric Oxide. 2004;10(4):179-193.
      Daniela B-G, Thomas R, Kolb-Bachofen V. Nitric oxide in human skin: current status and future prospects. J Invest Dermatol. 1998;110(1):1-7.
      Mowbray M, McLintock S, Weerakoon R, et al. Enzyme-independent NO stores in human skin: quantification and influence of UV radiation. J Invest Dermatol. 2009;129(4):834-842.
      Bruch-Gerharz D, Ruzicka T, Kolb-Bachofen V. Nitric oxide and its implications in skin homeostasis and disease - a review. Arch Dermatol Res. 1998;290(12):643-651.
      Oplander C, Deck A, Volkmar CM, et al. Mechanism and biological relevance of blue-light (420-453 nm)-induced nonenzymatic nitric oxide generation from photolabile nitric oxide derivates in human skin in vitro and in vivo. Free Radic Biol Med. 2013;65:1363-1377.
      Weller R, Pattullo S, Smith L, Golden M, Ormerod A, Benjamin N. Nitric oxide is generated on the skin surface by reduction of sweat nitrate. J Invest Dermatol. 1996;107(3):327-331.
      Kellogg DL Jr, Zhao JL, Wu Y. Endothelial nitric oxide synthase control mechanisms in the cutaneous vasculature of humans in vivo. Am J Physiol Heart Circ Physiol. 2008;295(1):H123-129.
      Liu D, Fernandez BO, Hamilton A, et al. UVA Irradiation of human skin vasodilates arterial vasculature and lowers blood pressure independently of nitric oxide synthase. J Invest Dermatol. 2014;134(7):1839-1846.
      Halliday GM, Byrne SN. An unexpected role: UVA-induced release of nitric oxide from skin may have unexpected health benefits. J Invest Dermatol. 2014;134(7):1791-1794.
      Smith CJ, Santhanam L, Bruning RS, Stanhewicz A, Berkowitz DE, Holowatz LA. Upregulation of inducible nitric oxide synthase contributes to attenuated cutaneous vasodilation in essential hypertensive humans. Hypertension. 2011;58(5):935-942.
      Dhamrait GK, Panchal K, Fleury NJ, et al. Characterising nitric oxide-mediated metabolic benefits of low-dose ultraviolet radiation in the mouse: a focus on brown adipose tissue. Diabetologia. 2020;63(1):179-193.
      Norman AW, Henry HL. Hormones: an introduction. In: Norman AW, Henry HL, eds. Hormones, 3rd edn. San Diego: Academic Press; 2015:1-25.
      Kopincová J, Púzserová A, Bernátová I. Biochemical aspects of nitric oxide synthase feedback regulation by nitric oxide. Interdiscip Toxicol. 2011;4(2):63-68.
      Schwartz D, Mendonca M, Schwartz I, et al. Inhibition of constitutive nitric oxide synthase (NOS) by nitric oxide generated by inducible NOS after lipopolysaccharide administration provokes renal dysfunction in rats. J Clin Invest. 1997;100(2):439-448.
      Buga GM, Griscavage JM, Rogers NE, Ignarro LJ. Negative feedback regulation of endothelial cell function by nitric oxide. Circ Res. 1993;73(5):808-812.
      Abu-Soud HM, Ichimori K, Nakazawa H, Stuehr DJ. Regulation of inducible nitric oxide synthase by self-generated NO. Biochemistry. 2001;40(23):6876-6881.
      Scott JA, Mehta S, Duggan M, Bihari A, McCormack DG. Functional inhibition of constitutive nitric oxide synthase in a rat model of sepsis. Am J Respir Crit Care Med. 2002;165(10):1426-1432.
      Rogers NE, Ignarro LJ. Constitutive nitric oxide synthase from cerebellum is reversibly inhibited by nitric oxide formed from L-arginine. Biochem Biophys Res Comm. 1992;189(1):242-249.
      Carlström M, Liu M, Yang T, et al. Cross-talk between nitrate-nitrite-NO and NO synthase pathways in control of vascular NO homeostasis. Antioxid Redox Signal. 2015;23(4):295-306.
      Abu-Soud HM, Ichimori K, Presta A, Stuehr DJ. Electron transfer, oxygen binding, and nitric oxide feedback inhibition in endothelial nitric-oxide synthase. J Biol Chem. 2000;275(23):17349-17357.
      Santolini J. The molecular mechanism of mammalian NO-synthases: a story of electrons and protons. J Inorg Biochem. 2011;105(2):127-141.
      Grumbach IM, Chen W, Mertens SA, Harrison DG. A negative feedback mechanism involving nitric oxide and nuclear factor kappa-B modulates endothelial nitric oxide synthase transcription. J Mol Cell Cardiol. 2005;39(4):595-603.
      Davis MEGI, Fukai T, Cutchins A, Harrison DG. Shear stress regulates endothelial nitric-oxide synthase promoter activity through nuclear factor kappaB binding. J Biol Chem. 2004;279:163-168.
      Colasanti M, Persichini T, Menegazzi M, et al. Induction of nitric oxide synthase mRNA expression. Suppression by exogenous nitric oxide. J Biol Chem. 1995;270:26731-26733.
      Rassaf T, Feelisch M, Kelm M. Circulating NO pool: assessment of nitrite and nitroso species in blood and tissues. Free Radic Biol Med. 2004;36(4):413-422.
      Rodriguez J, Maloney RE, Rassaf T, Bryan NS, Feelisch M. Chemical nature of nitric oxide storage forms in rat vascular tissue. Proc Natl Acad Sci USA. 2003;100(1):336-341.
      Li L, Li L. Recent advances in multinuclear metal nitrosyl complexes. Coord Chem Rev. 2016;306(Pt 2):678-700.
      Suryo Rahmanto Y, Kalinowski DS, Lane DJR, Lok HC, Richardson V, Richardson DR. Nitrogen monoxide (NO) storage and transport by dinitrosyl-dithiol-iron complexes: long-lived NO that is trafficked by interacting proteins. J Biol Chem. 2012;287(10):6960-6968.
      Hogg N. The biochemistry and physiology of S-nitrosothiols. Annu Rev Pharmacol Toxicol. 2002;42:585-600.
      Stamler JS. S-nitrosothiols in the blood. Circ Res. 2004;94(4):414-417.
      Rassaf T, Kleinbongard P, Preik M, et al. Plasma nitrosothiols contribute to the systemic vasodilator effects of intravenously applied NO: experimental and clinical Study on the fate of NO in human blood. Circ Res. 2002;91(6):470-477.
      Rassaf T, Preik M, Kleinbongard P, et al. Evidence for in vivo transport of bioactive nitric oxide in human plasma. J Clin Investig. 2002;109(9):1241-1248.
      Suschek CV, Opländer C, van Faassen EE. Non-enzymatic NO production in human skin: effect of UVA on cutaneous NO stores. Nitric Oxide. 2010;22(2):120-135.
      Piknova B, Park JW, Swanson KM, Dey S, Noguchi CT, Schechter AN. Skeletal muscle as an endogenous nitrate reservoir. Nitric Oxide. 2015;47:10-16.
      Kim-Shapiro DB, Gladwin MT. Mechanisms of nitrite bioactivation. Nitric Oxide. 2014;30(1):58-68.
      Cosby K, Partovi KS, Crawford JH, et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003;9(12):1498.
      Bryan NS. Nitrite in nitric oxide biology: cause or consequence? A systems-based review. Free Radic Biol Med. 2006;41(5):691-701.
      Gladwin MT, Raat NJH, Shiva S, et al. Nitrite as a vascular endocrine nitric oxide reservoir that contributes to hypoxic signaling, cytoprotection, and vasodilation. Am J Physiol Heart Circ Physiol. 2006;291(5):H2026- H2035.
      Shiva S. Nitrite: a physiological store of nitric oxide and modulator of mitochondrial function. Redox Biol. 2013;1(1):40-44.
      Dejam A, Hunter CJ, Pelletier MM, et al. Erythrocytes are the major intravascular storage sites of nitrite in human blood. Blood. 2005;106(2):734-739.
      Nagababu E, Rifkind JM. Measurement of plasma nitrite by chemiluminescence without interference of S-, N-nitroso and nitrated species. Free Radic Biol Med. 2007;42(8):1146-1154.
      Chen K, Piknova B, Pittman RN, Schechter AN, Popel AS. Nitric oxide from nitrite reduction by hemoglobin in the plasma and erythrocytes. Nitric Oxide. 2008;18(1):47-60.
      Gladwin MT, Shelhamer JH, Schechter AN, et al. Role of circulating nitrite and S-nitrosohemoglobin in the regulation of regional blood flow in humans. Proc Natl Acad Sci USA. 2000;97(21):11482-11487.
      Zweier JL, Samouilov A, Kuppusamy P. Non-enzymatic nitric oxide synthesis in biological systems. Biochem Biophys Acta. 1999;1411(2-3):250-262.
      Keese MA, Böse M, Mülsch A, Schirmer RH, Becker K. Dinitrosyl-dithiol-iron complexes, nitric oxide (NO) Carriers in vivo, as potent inhibitors of human glutathione reductase and glutathione-S-transferase. Biochem Pharmacol. 1997;54(12):1307-1313.
      Lok HC, Rahmanto YS, Hawkins CL, et al. Nitric oxide storage and transport in cells are mediated by glutathione S-transferase P1-1 and multidrug resistance protein 1 via dinitrosyl iron complexes. J Biol Chem. 2012;287(1):607-618.
      Turella P, Pedersen JZ, Caccuri AM, et al. Glutathione transferase superfamily behaves like storage proteins for dinitrosyl-diglutathionyl-iron complex in heterogeneous systems. J Biol Chem. 2003;278(43):42294-42299.
      Nussey S, Whitehead S. Endocrinology: An Integrated Approach. Oxford, UK: BIOS Scientific Publishers; 2001:1-21.
      Webb AJ, Milsom AB, Rathod KS, et al. Mechanisms underlying erythrocyte and endothelial nitrite reduction to nitric oxide in hypoxia. Circ Res. 2008;103(9):957-964.
      Forsyth AM, Wan J, Owrutsky PD, Abkarian M, Stone HA. Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release. Proc Natl Acad Sci USA. 2011;108(27):10986-10991.
      Chen K, Pittman RN, Popel AS. Vascular smooth muscle NO exposure from intraerythrocytic SNOHb: a mathematical model. Antioxid Redox Signal. 2007;9(8):1097-1110.
      Modin A, Bjorne H, Herulf M, Alving K, Weitzberg E, Lundberg JO. Nitrite-derived nitric oxide: a possible mediator of 'acidic-metabolic' vasodilation. Acta Physiol Scand. 2001;171(1):9-16.
      Ford E, Hughes MN, Wardman P. The reaction of superoxide radicals with S-nitrosoglutathione and the products of its reductive heterolysis. J Biol Chem. 2002;277(4):2430-2436.
      Singh RJ, Hogg N, Joseph J, Kalyanaraman B. Mechanism of nitric oxide release from S-nitrosothiols. J Biol Chem. 1996;271(31):18596-18603.
      Giustarini D, Milzani A, Dalle-Donne I, Rossi R. Detection of S-nitrosothiols in biological fluids: a comparison among the most widely applied methodologies. J Chromatogr B. 2007;851(1):124-139.
      Figueroa XF, Lillo MA, Gaete PS, Riquelme MA, Sáez JC. Diffusion of nitric oxide across cell membranes of the vascular wall requires specific connexin-based channels. Neuropharmacology. 2013;75:471-478.
      García IE, Sánchez HA, Martínez AD, Retamal MA. Redox-mediated regulation of connexin proteins; focus on nitric oxide. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2018;1860(1):91-95.
      Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science. 1992;258(5090):1898-1902.
      Doctor A, Stamler JS. Nitric oxide transport in blood: a third gas in the respiratory cycle. Comp Physiol. 2011;1(1):541-568.
      Doctor A, Spinella P. Effect of processing and storage on red blood cell function in vivo. Semin Perinatol. 2012;36(4):248-259.
      Hall CN, Garthwaite J. What is the real physiological NO concentration in vivo? Nitric Oxide. 2009;21(2):92-103.
      Stamler JS, Jaraki O, Osborne J, et al. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci. 1992;89(16):7674-7677.
      Bolander F. Introduction and general endocrinology. In: Bolander F, ed. Molecular Endocrinology. California: Academic Press; 2004:3-24.
      Helms C, Kim-Shapiro DB. Hemoglobin-mediated nitric oxide signaling. Free Radic Biol Med. 2013;464-472.
      Vaughn MW, Kuo L, Liao JC. Estimation of nitric oxide production and reactionrates in tissue by use of a mathematical model. Am J Physiol Heart Circ Physiol. 1998;274(6):H2163-H2176.
      Ford PC, Wink DA, Stanbury DM. Autoxidation kinetics of aqueous nitric oxide. FEBS Lett. 1993;326(1-3):1-3.
      Ghasemi A, Zahediasl S. Preanalytical and analytical considerations for measuring nitric oxide metabolites in serum or plasma using the Griess method. Clin Lab. 2012;58(7-8):615-624.
      Romitelli F, Santini SA, Chierici E, et al. Comparison of nitrite/nitrate concentration in human plasma and serum samples measured by the enzymatic batch Griess assay, ion-pairing HPLC and ion-trap GC-MS: the importance of a correct removal of proteins in the Griess assay. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;851(1-2):257-267.
      Sansbury BE, Hill BG. Regulation of obesity and insulin resistance by nitric oxide. Free Radic Biol Med. 2014;73:383-399.
      Schmid-Schönbein H, Fischer T, Driessen G, Rieger HM. Microcirculation. In: Hwang NHC, Gross DR, Patel DJ, eds. Quantitative Cardiovascular Studies: Clinical Research Application of Engineering Principles. Baltimore, MD: University Park Press; 1979:353-417.
      Gow AJ, Stamler JS. Reactions between nitric oxide and haemoglobin under physiological conditions. Nature. 1998;391(6663):169-173.
      Dei Zotti F, Lobysheva II, Balligand J-L. Nitrosyl-hemoglobin formation in rodent and human venous erythrocytes reflects NO formation from the vasculature in vivo. PLoS ONE. 2018;13(7):e0200352.
      Pawloski JR, Hess DT, Stamler JS. Export by red blood cells of nitric oxide bioactivity. Nature. 2001;409(6820):622-626.
      McMahon TJ, Doctor A. Extrapulmonary effects of inhaled nitric oxide: role of reversible S-nitrosylation of erythrocytic hemoglobin. Proc Am Thorac Soc. 2006;3(2):153-160.
      Datta B, Tufnell-Barrett T, Bleasdale RA, et al. Red blood cell nitric oxide as an endocrine vasoregulator: a potential role in congestive heart failure. Circulation. 2004;109(11):1339-1342.
      Jia L, Bonaventura C, Bonaventura J, Stamler JS. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature. 1996;380(6571):221.
      McMahon TJ, Moon RE, Luschinger BP, et al. Nitric oxide in the human respiratory cycle. Nat Med. 2002;8(7):711.
      Butler AR, Rhodes P. Chemistry, analysis, and biological roles of S-nitrosothiols. Anal Biochem. 1997;249(1):1-9.
      Bryan NS, Rassaf T, Rodriguez J, Feelisch M. Bound NO in human red blood cells: fact or artifact? Nitric Oxide. 2004;10(4):221-228.
      Rassaf T, Bryan NS, Maloney RE, et al. NO adducts in mammalian red blood cells: too much or too little? Nat Med. 2003;9(5):481-482; author reply 482-483.
      Funai EF, Davidson A, Seligman SP, Finlay TH. S-nitrosohemoglobin in the fetal circulation may represent a cycle for blood pressure regulation. Biochem Biophys Res Comm. 1997;239(3):875-877.
      Nagababu E, Rifkind JM. Determination of s-nitrosothiols in biological fluids by chemiluminescence. Methods Mol Biol (Clifton, NJ). 2011;704:27-37.
      Wang X, Bryan NS, MacArthur PH, Rodriguez J, Gladwin MT, Feelisch M. Measurement of nitric oxide levels in the red cell validation of tri-iodide-based chemiluminescence with acid-sulfanilamide pretreatment. J Biol Chem. 2006;281(37):26994-27002.
      Nagababu E, Rifkind JM. Routes for formation of S-nitrosothiols in blood. Cell Biochem Biophys. 2013;67(2):385-398.
      Wang X, Tanus-Santos JE, Reiter CD, et al. Biological activity of nitric oxide in the plasmatic compartment. Proc Natl Acad Sci. 2004;101(31):11477-11482.
      Rassaf T, Bryan NS, Kelm M, Feelisch M. Concomitant presence of N-nitroso and S-nitroso proteins in human plasma. Free Radic Biol Med. 2002;33(11):1590-1596.
      Childers KC, Garcin ED. Structure/function of the soluble guanylyl cyclase catalytic domain. Nitric Oxide. 2018;77:53-64.
      Denninger JW, Marletta MA. Guanylate cyclase and the ⋅NO/cGMP signaling pathway. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1999;1411(2):334-350.
      Schmidt HHHW, Walter U. NO at work. Cell. 1994;78(6):919-925.
      Stasch J-P, Pacher P, Evgenov OV. Soluble guanylate cyclase as an emerging therapeutic target in cardiopulmonary disease. Circulation. 2011;123(20):2263-2273.
      Horst BG, Marletta MA. Physiological activation and deactivation of soluble guanylate cyclase. Nitric Oxide. 2018;77:65-74.
      Ballou DP, Zhao Y, Brandish PE, Marletta MA. Revisiting the kinetics of nitric oxide (NO) binding to soluble guanylate cyclase: the simple NO-binding model is incorrect. Proc Natl Acad Sci USA. 2002;99(19):12097-12101.
      Bellamy TC, Wood J, Goodwin DA, Garthwaite J. Rapid desensitization of the nitric oxide receptor, soluble guanylyl cyclase, underlies diversity of cellular cGMP responses. Proc Natl Acad Sci. 2000;97(6):2928-2933.
      Bellamy TC, Griffiths C, Garthwaite J. Differential sensitivity of guanylyl cyclase and mitochondrial respiration to nitric oxide measured using clamped concentrations. J Biol Chem. 2002;277(35):31801-31807.
      Bellamy TC, Garthwaite J. Sub-second kinetics of the nitric oxide receptor, soluble guanylyl cyclase, in intact cerebellar cells. J Biol Chem. 2001;276(6):4287-4292.
      Ruiz-Stewart I, Tiyyagura SR, Lin JE, et al. Guanylyl cyclase is an ATP sensor coupling nitric oxide signaling to cell metabolism. Proc Natl Acad Sci. 2004;101(1):37-42.
      Fritz BG, Hu X, Brailey JL, Berry RE, Walker FA, Montfort WR. Oxidation and loss of heme in soluble guanylyl cyclase from Manduca sexta. Biochemistry. 2011;50(26):5813-5815.
      Sayed N, Baskaran P, Ma X, van den Akker F, Beuve A. Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation. Proc Natl Acad Sci USA. 2007;104(30):12312-12317.
      Gao YT, Roman LJ, Martásek P, Panda SP, Ishimura Y, Masters BSS. Oxygen metabolism by endothelial nitric oxide synthase. J Biol Chem. 2007;282(39):28557-28565.
      Mannick JB, Schonhoff CM. Nitrosylation: the next phosphorylation? Arch Biochem Biophys. 2002;408(1):1-6.
      Wanstall JC, Homer KL, Doggrell SA. Evidence for, and importance of, cGMP-independent mechanisms with NO and NO donors on blood vessels and platelets. Curr Vasc Pharmacol. 2005;3(1):41-53.
      O'Donnell VB, Eiserich JP, Chumley PH, et al. Nitration of unsaturated fatty acids by nitric oxide-derived reactive nitrogen species peroxynitrite, nitrous acid, nitrogen dioxide, and nitronium ion. Chem Res Toxicol. 1999;12(1):83-92.
      Horenberg AL, Houghton AM, Pandey S, Seshadri V, Guilford WH. Cytoskeleton. 2019;76(3):243-253.
      Okamoto S, Lipton SA. S-Nitrosylation in neurogenesis and neuronal development. Biochim Biophys Acta. 2015;1850(8):1588-1593.
      Lin L, Xu C, Carraway MS, Piantadosi CA, Whorton AR, Li S. RhoA inactivation by S-nitrosylation regulates vascular smooth muscle contractive signaling. Nitric Oxide. 2018;74:56-64.
      Murad F. Nitric oxide signaling: would you believe that a simple free radical could be a second messenger, autacoid, paracrine substance, neurotransmitter, and hormone? Recent Prog Horm Res. 1998;53:43-59: discussion 59-60.
      Mo E, Amin H, Bianco IH, Garthwaite J. Kinetics of a cellular nitric oxide/cGMP/phosphodiesterase-5 pathway. J Biol Chem. 2004;279(25):26149-26158.
      Gamble KL, Berry R, Frank SJ, Young ME. Circadian clock control of endocrine factors. Nat Rev Endocrinol. 2014;10(8):466-475.
      Jameson JL. Principles of Endocrinology. In: Jameson JL, ed. Endocrinology: Adult & Pediatric, Vol II. Philadelphia, PA: Elsevier; 2016:3-16.
      Tunçtan B, Weigl Y, Dotan A, et al. Circadian variation of nitric oxide synthase activity in mouse tissue. Chronobiol Int. 2002;19(2):393-404.
      Kanabrocki EL, George M, Hermida RC, et al. Day-night variations in blood levels of nitric oxide, T-TFPI, and E-selectin. Clin Appl Thromb Hemost. 2001;7(4):339-345.
      Antosova M, Bencova A, Psenkova A, Herle D, Rozborilova E. Exhaled nitric oxide - circadian variations in healthy subjects. Eur J Med Res. 2009;14(Suppl 4):6-8.
      Witte K, Schnecko A, Zuther P, Lemmer B. Contribution of the nitric oxide-guanylyl cyclase system to circadian regulation of blood pressure in normotensive Wistar-Kyoto rats. Cardiovasc Res. 1995;30(5):682-688.
      Mastronardi CA, Yu WH, McCann SM. Resting and circadian release of nitric oxide is controlled by leptin in male rats. Proc Natl Acad Sci USA. 2002;99(8):5721-5726.
      Kanabrocki EL, Third JL, Ryan MD, et al. Circadian relationship of serum uric acid and nitric oxide. JAMA. 2000;283(17):2240-2241.
      Dressel H, Bihler A, Jund F, et al. Diurnal variation of nasal nitric oxide levels in healthy subjects. J Investig Allergol Clin Immunol. 2008;18(4):316-317.
      Bode-Boger SM, Boger RH, Kielstein JT, Loffler M, Schaffer J, Frolich JC. Role of endogenous nitric oxide in circadian blood pressure regulation in healthy humans and in patients with hypertension or atherosclerosis. J Investig Med. 2000;48(2):125-132.
      Melo L, Golombek DA, Ralph MR. Regulation of circadian photic responses by nitric oxide. J Biol Rhythms. 1997;12(4):319-326.
      Kunieda T, Minamino T, Miura K, et al. Reduced nitric oxide causes age-associated impairment of circadian rhythmicity. Circ Res. 2008;102(5):607-614.
      Jameson JL. Hormone Resistance Syndromes. Vol 14. New York, NY: Springer Science & Business Media; 1999.
      Verhoeven GF, Wilson JD. The syndromes of primary hormone resistance. Metabolism. 1979;28(3):253-289.
      Chirkov YY, Horowitz JD. Impaired tissue responsiveness to organic nitrates and nitric oxide: a new therapeutic frontier? Pharmacol Ther. 2007;116(2):287-305.
      Gladwin MT. Deconstructing endothelial dysfunction: soluble guanylyl cyclase oxidation and the NO resistance syndrome. J Clin Investig. 2006;116(9):2330-2332.
      Herring N, Paterson DJ. Levick's Introduction to Cardiovascular Physiology. Boca Raton, FL: CRC Press; 2018.
    • Contributed Indexing:
      Keywords: endocrine; hormone; nitric oxide; signalling molecule
    • الرقم المعرف:
      0 (Hormones)
      31C4KY9ESH (Nitric Oxide)
      EC 4.6.1.2 (Soluble Guanylyl Cyclase)
    • الموضوع:
      Date Created: 20200117 Date Completed: 20210721 Latest Revision: 20210721
    • الموضوع:
      20231215
    • الرقم المعرف:
      10.1111/apha.13443
    • الرقم المعرف:
      31944587