Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Time and space-resolved quantification of plasma membrane sialylation for measurements of cell function and neurotoxicity.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 0417615 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0738 (Electronic) Linking ISSN: 03405761 NLM ISO Abbreviation: Arch Toxicol Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Berlin, New York, Springer-Verlag.
    • الموضوع:
    • نبذة مختصرة :
      While there are many methods to quantify the synthesis, localization, and pool sizes of proteins and DNA during physiological responses and toxicological stress, only few approaches allow following the fate of carbohydrates. One of them is metabolic glycoengineering (MGE), which makes use of chemically modified sugars (CMS) that enter the cellular biosynthesis pathways leading to glycoproteins and glycolipids. The CMS can subsequently be coupled (via bio-orthogonal chemical reactions) to tags that are quantifiable by microscopic imaging. We asked here, whether MGE can be used in a quantitative and time-resolved way to study neuronal glycoprotein synthesis and its impairment. We focused on the detection of sialic acid (Sia), by feeding human neurons the biosynthetic precursor N-acetyl-mannosamine, modified by an azide tag. Using this system, we identified non-toxic conditions that allowed live cell labeling with high spatial and temporal resolution, as well as the quantification of cell surface Sia. Using combinations of immunostaining, chromatography, and western blotting, we quantified the percentage of cellular label incorporation and effects on glycoproteins such as polysialylated neural cell adhesion molecule. A specific imaging algorithm was used to quantify Sia incorporation into neuronal projections, as potential measure of complex cell function in toxicological studies. When various toxicants were studied, we identified a subgroup (mitochondrial respiration inhibitors) that affected neurite glycan levels several hours before any other viability parameter was affected. The MGE-based neurotoxicity assay, thus allowed the identification of subtle impairments of neurochemical function with very high sensitivity.
    • References:
      Aebi M, Bernasconi R, Clerc S, Molinari M (2010) N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 35(2):74–82. https://doi.org/10.1016/j.tibs.2009.10.001. (PMID: 10.1016/j.tibs.2009.10.00119853458)
      Almaraz RT, Aich U, Khanna HS et al (2012) Metabolic oligosaccharide engineering with N-Acyl functionalized ManNAc analogs: cytotoxicity, metabolic flux, and glycan-display considerations. Biotechnol Bioeng 109(4):992–1006. https://doi.org/10.1002/bit.24363. (PMID: 10.1002/bit.2436322068462)
      Axelsson V, Holback S, Sjogren M, Gustafsson H, Forsby A (2006) Gliotoxin induces caspase-dependent neurite degeneration and calpain-mediated general cytotoxicity in differentiated human neuroblastoma SH-SY5Y cells. Biochem Biophys Res Commun 345(3):1068–1074. https://doi.org/10.1016/j.bbrc.2006.05.019. (PMID: 10.1016/j.bbrc.2006.05.01916712786)
      Bal-Price A, Lein PJ, Keil KP et al (2017) Developing and applying the adverse outcome pathway concept for understanding and predicting neurotoxicity. Neurotoxicology 59:240–255. https://doi.org/10.1016/j.neuro.2016.05.010. (PMID: 10.1016/j.neuro.2016.05.01027212452)
      Bal-Price A, Hogberg HT, Crofton KM et al (2018) Recommendation on test readiness criteria for new approach methods in toxicology: exemplified for developmental neurotoxicity. Altex 35(3):306–352. https://doi.org/10.14573/altex.1712081. (PMID: 10.14573/altex.1712081294856636545888)
      Bonfoco E, Leist M, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P (1996) Cytoskeletal breakdown and apoptosis elicited by NO donors in cerebellar granule cells require NMDA receptor activation. J Neurochem 67(6):2484–2493. https://doi.org/10.1046/j.1471-4159.1996.67062484.x. (PMID: 10.1046/j.1471-4159.1996.67062484.x8931482)
      Buttner B, Kannicht C, Schmidt C et al (2002) Biochemical engineering of cell surface sialic acids stimulates axonal growth. J Neurosci 22(20):8869–8875. (PMID: 10.1523/JNEUROSCI.22-20-08869.2002)
      Campbell CT, Sampathkumar SG, Yarema KJ (2007) Metabolic oligosaccharide engineering: perspectives, applications, and future directions. Mol Biosyst 3(3):187–194. https://doi.org/10.1039/b614939c. (PMID: 10.1039/b614939c17308665)
      Ceresa C, Avan A, Giovannetti E et al (2014) Characterization of and protection from neurotoxicity induced by oxaliplatin, bortezomib and epothilone-B. Anticancer Res 34(1):517–523. (PMID: 24403510)
      Charter NW, Mahal LK, Koshland DE Jr, Bertozzi CR (2000) Biosynthetic incorporation of unnatural sialic acids into polysialic acid on neural cells. Glycobiology 10(10):1049–1056. (PMID: 10.1093/glycob/10.10.1049)
      Charter NW, Mahal LK, Koshland DE Jr, Bertozzi CR (2002) Differential effects of unnatural sialic acids on the polysialylation of the neural cell adhesion molecule and neuronal behavior. J Biol Chem 277(11):9255–9261. https://doi.org/10.1074/jbc.M111619200. (PMID: 10.1074/jbc.M11161920011786551)
      Culbreth ME, Harrill JA, Freudenrich TM, Mundy WR, Shafer TJ (2012) Comparison of chemical-induced changes in proliferation and apoptosis in human and mouse neuroprogenitor cells. Neurotoxicology 33(6):1499–1510. https://doi.org/10.1016/j.neuro.2012.05.012. (PMID: 10.1016/j.neuro.2012.05.01222634143)
      Delp J, Gutbier S, Cerff M et al (2018a) Stage-specific metabolic features of differentiating neurons: Implications for toxicant sensitivity. Toxicol Appl Pharmacol 354:64–80. https://doi.org/10.1016/j.taap.2017.12.013. (PMID: 10.1016/j.taap.2017.12.01329278688)
      Delp J, Gutbier S, Klima S et al (2018b) A high-throughput approach to identify specific neurotoxicants/ developmental toxicants in human neuronal cell function assays. Altex 35(2):235–253. https://doi.org/10.14573/altex.1712182. (PMID: 10.14573/altex.171218229423527)
      Delp J, Funke M, Rudolf F et al (2019) Development of a neurotoxicity assay that is tuned to detect mitochondrial toxicants. Arch Toxicol. https://doi.org/10.1007/s00204-019-02473-y. (PMID: 10.1007/s00204-019-02473-y31190196)
      Dennis JW, Nabi IR, Demetriou M (2009) Metabolism, cell surface organization, and disease. Cell 139(7):1229–1241. https://doi.org/10.1016/j.cell.2009.12.008. (PMID: 10.1016/j.cell.2009.12.008200643703065826)
      Dold J, Pfotzer J, Spate AK, Wittmann V (2017) Dienophile-modified mannosamine derivatives for metabolic labeling of sialic acids: a comparative study. ChemBioChem 18(13):1242–1250. https://doi.org/10.1002/cbic.201700002. (PMID: 10.1002/cbic.20170000228318083)
      Doll F, Buntz A, Spate AK et al (2016) Visualization of protein-specific glycosylation inside living cells. Angew Chem Int Ed Engl 55(6):2262–2266. https://doi.org/10.1002/anie.201503183. (PMID: 10.1002/anie.20150318326756572)
      Du J, Meledeo MA, Wang Z, Khanna HS, Paruchuri VD, Yarema KJ (2009) Metabolic glycoengineering: sialic acid and beyond. Glycobiology 19(12):1382–1401. https://doi.org/10.1093/glycob/cwp115. (PMID: 10.1093/glycob/cwp115196750912770326)
      Dube DH, Bertozzi CR (2003) Metabolic oligosaccharide engineering as a tool for glycobiology. Curr Opin Chem Biol 7(5):616–625. (PMID: 10.1016/j.cbpa.2003.08.006)
      Efremova L, Chovancova P, Adam M, Gutbier S, Schildknecht S, Leist M (2017) Switching from astrocytic neuroprotection to neurodegeneration by cytokine stimulation. Arch Toxicol 91(1):231–246. https://doi.org/10.1007/s00204-016-1702-2. (PMID: 10.1007/s00204-016-1702-227052459)
      Esko JD, Bertozzi C, Schnaar RL (2015) Chemical tools for inhibiting glycosylation. In: rd, Varki A, Cummings RD, et al. (eds) Essentials of glycobiology. Cold Spring Harbor (NY), p 701–712. https://doi.org/10.1101/glycobiology.3e.055.
      Flaskos J, Nikolaidis E, Harris W, Sachana M, Hargreaves AJ (2011) Effects of sub-lethal neurite outgrowth inhibitory concentrations of chlorpyrifos oxon on cytoskeletal proteins and acetylcholinesterase in differentiating N2a cells. Toxicol Appl Pharmacol 256(3):330–336. https://doi.org/10.1016/j.taap.2011.06.002. (PMID: 10.1016/j.taap.2011.06.00221704052)
      Frimat JP, Sisnaiske J, Subbiah S et al (2010) The network formation assay: a spatially standardized neurite outgrowth analytical display for neurotoxicity screening. Lab Chip 10(6):701–709. https://doi.org/10.1039/b922193j. (PMID: 10.1039/b922193j20221557)
      Galuska SP, Rollenhagen M, Kaup M et al (2010) Synaptic cell adhesion molecule SynCAM 1 is a target for polysialylation in postnatal mouse brain. Proc Natl Acad Sci USA 107(22):10250–10255. https://doi.org/10.1073/pnas.0912103107. (PMID: 10.1073/pnas.091210310720479255)
      Ganjam GK, Bolte K, Matschke LA et al (2019) Mitochondrial damage by alpha-synuclein causes cell death in human dopaminergic neurons. Cell Death Dis 10(11):865. https://doi.org/10.1038/s41419-019-2091-2. (PMID: 10.1038/s41419-019-2091-2317278796856124)
      Gerhardt E, Kugler S, Leist M et al (2001) Cascade of caspase activation in potassium-deprived cerebellar granule neurons: targets for treatment with peptide and protein inhibitors of apoptosis. Mol Cell Neurosci 17(4):717–731. https://doi.org/10.1006/mcne.2001.0962. (PMID: 10.1006/mcne.2001.096211312607)
      Hansson O, Castilho RF, Kaminski Schierle GS et al (2000) Additive effects of caspase inhibitor and lazaroid on the survival of transplanted rat and human embryonic dopamine neurons. Exp Neurol 164(1):102–111. https://doi.org/10.1006/exnr.2000.7406. (PMID: 10.1006/exnr.2000.740610877920)
      Harrill JA (2018) Human-derived neurons and neural progenitor cells in high content imaging applications. Methods Mol Biol 1683:305–338. https://doi.org/10.1007/978-1-4939-7357-6_18. (PMID: 10.1007/978-1-4939-7357-6_1829082500)
      Harris G, Eschment M, Orozco SP et al (2018) Toxicity, recovery, and resilience in a 3D dopaminergic neuronal in vitro model exposed to rotenone. Arch Toxicol 92(8):2587–2606. https://doi.org/10.1007/s00204-018-2250-8. (PMID: 10.1007/s00204-018-2250-8299559026063347)
      Hebert DN, Garman SC, Molinari M (2005) The glycan code of the endoplasmic reticulum: asparagine-linked carbohydrates as protein maturation and quality-control tags. Trends Cell Biol 15(7):364–370. https://doi.org/10.1016/j.tcb.2005.05.007. (PMID: 10.1016/j.tcb.2005.05.00715939591)
      Hirt UA, Gantner F, Leist M (2000) Phagocytosis of nonapoptotic cells dying by caspase-independent mechanisms. J Immunol 164(12):6520–6529. https://doi.org/10.4049/jimmunol.164.12.6520. (PMID: 10.4049/jimmunol.164.12.652010843710)
      Hoelting L, Klima S, Karreman C et al (2016) Stem cell-derived immature human dorsal root ganglia neurons to identify peripheral neurotoxicants. Stem Cells Transl Med 5(4):476–487. https://doi.org/10.5966/sctm.2015-0108. (PMID: 10.5966/sctm.2015-0108269330434798731)
      Kang K, Joo S, Choi JY et al (2015) Tissue-based metabolic labeling of polysialic acids in living primary hippocampal neurons. Proc Natl Acad Sci USA 112(3):E241–E248. https://doi.org/10.1073/pnas.1419683112. (PMID: 10.1073/pnas.141968311225564666)
      Karreman C, Kranaster P, Leist M (2019) SUIKER: quantification of antigens in cell organelles, neurites and cellular sub-structures by imaging. Altex 36(3):518–520. https://doi.org/10.14573/altex.1906251. (PMID: 10.14573/altex.190625131329264)
      Keppler OT, Horstkorte R, Pawlita M, Schmidt C, Reutter W (2001) Biochemical engineering of the N-acyl side chain of sialic acid: biological implications. Glycobiology 11(2):11R–18R. https://doi.org/10.1093/glycob/11.2.11r. (PMID: 10.1093/glycob/11.2.11r11287396)
      Krug AK, Balmer NV, Matt F, Schonenberger F, Merhof D, Leist M (2013) Evaluation of a human neurite growth assay as specific screen for developmental neurotoxicants. Arch Toxicol 87(12):2215–2231. https://doi.org/10.1007/s00204-013-1072-y. (PMID: 10.1007/s00204-013-1072-y23670202)
      Krug AK, Gutbier S, Zhao L et al (2014) Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP(+). Cell Death Dis 5:e1222. https://doi.org/10.1038/cddis.2014.166. (PMID: 10.1038/cddis.2014.166248100584047858)
      Lau KS, Partridge EA, Grigorian A et al (2007) Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129(1):123–134. https://doi.org/10.1016/j.cell.2007.01.049. (PMID: 10.1016/j.cell.2007.01.04917418791)
      Laughlin ST, Bertozzi CR (2007) Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation. Nat Protoc 2(11):2930–2944. https://doi.org/10.1038/nprot.2007.422. (PMID: 10.1038/nprot.2007.42218007630)
      Leist M, Hengstler JG (2018) Essential components of methods papers. Altex 35(3):429–432. https://doi.org/10.14573/altex.1807031. (PMID: 10.14573/altex.180703130008013)
      Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2(8):589–598. https://doi.org/10.1038/35085008. (PMID: 10.1038/3508500811483992)
      Leist M, Nicotera P (1998) Calcium and neuronal death. Rev Physiol Biochem Pharmacol 132:79–125. (PMID: 10.1007/BFb0004986)
      Li J, Settivari R, LeBaron MJ, Marty MS (2019) An industry perspective: a streamlined screening strategy using alternative models for chemical assessment of developmental neurotoxicity. Neurotoxicology 73:17–30. https://doi.org/10.1016/j.neuro.2019.02.010. (PMID: 10.1016/j.neuro.2019.02.01030786249)
      Merzaban JS, Imitola J, Starossom SC et al (2015) Cell surface glycan engineering of neural stem cells augments neurotropism and improves recovery in a murine model of multiple sclerosis. Glycobiology 25(12):1392–1409. https://doi.org/10.1093/glycob/cwv046. (PMID: 10.1093/glycob/cwv046261531054634313)
      Moremen KW, Tiemeyer M, Nairn AV (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13(7):448–462. https://doi.org/10.1038/nrm3383. (PMID: 10.1038/nrm3383227226073934011)
      Muhlenhoff M, Rollenhagen M, Werneburg S, Gerardy-Schahn R, Hildebrandt H (2013) Polysialic acid: versatile modification of NCAM, SynCAM 1 and neuropilin-2. Neurochem Res 38(6):1134–1143. https://doi.org/10.1007/s11064-013-0979-2. (PMID: 10.1007/s11064-013-0979-223354723)
      Munster AK, Eckhardt M, Potvin B, Muhlenhoff M, Stanley P, Gerardy-Schahn R (1998) Mammalian cytidine 5'-monophosphate N-acetylneuraminic acid synthetase: a nuclear protein with evolutionarily conserved structural motifs. Proc Natl Acad Sci USA 95(16):9140–9145. https://doi.org/10.1073/pnas.95.16.9140. (PMID: 10.1073/pnas.95.16.91409689047)
      Narro ML, Yang F, Kraft R, Wenk C, Efrat A, Restifo LL (2007) NeuronMetrics: software for semi-automated processing of cultured neuron images. Brain Res 1138:57–75. https://doi.org/10.1016/j.brainres.2006.10.094. (PMID: 10.1016/j.brainres.2006.10.094172701521945162)
      Niederwieser A, Spate AK, Nguyen LD, Jungst C, Reutter W, Wittmann V (2013) Two-color glycan labeling of live cells by a combination of Diels–Alder and click chemistry. Angew Chem Int Ed Engl 52(15):4265–4268. https://doi.org/10.1002/anie.201208991. (PMID: 10.1002/anie.20120899123468318)
      Nischan N, Kohler JJ (2016) Advances in cell surface glycoengineering reveal biological function. Glycobiology 26(8):789–796. https://doi.org/10.1093/glycob/cww045. (PMID: 10.1093/glycob/cww045270668025018048)
      Noma K, Kimura K, Minatohara K et al (2009) Triple N-glycosylation in the long S5-P loop regulates the activation and trafficking of the Kv12.2 potassium channel. J Biol Chem 284(48):33139–33150. https://doi.org/10.1074/jbc.M109.021519. (PMID: 10.1074/jbc.M109.021519198086812785156)
      Ogasawara Y, Namai T, Yoshino F, Lee MC, Ishii K (2007) Sialic acid is an essential moiety of mucin as a hydroxyl radical scavenger. FEBS Lett 581(13):2473–2477. https://doi.org/10.1016/j.febslet.2007.04.062. (PMID: 10.1016/j.febslet.2007.04.06217485090)
      Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126(5):855–867. https://doi.org/10.1016/j.cell.2006.08.019. (PMID: 10.1016/j.cell.2006.08.01916959566)
      Pham ND, Fermaintt CS, Rodriguez AC, McCombs JE, Nischan N, Kohler JJ (2015) Cellular metabolism of unnatural sialic acid precursors. Glycoconj J 32(7):515–529. https://doi.org/10.1007/s10719-015-9593-7. (PMID: 10.1007/s10719-015-9593-7259575664641449)
      Poltl D, Schildknecht S, Karreman C, Leist M (2012) Uncoupling of ATP-depletion and cell death in human dopaminergic neurons. Neurotoxicology 33(4):769–779. https://doi.org/10.1016/j.neuro.2011.12.007. (PMID: 10.1016/j.neuro.2011.12.00722206971)
      Ruszkiewicz JA, Pinkas A, Miah MR et al (2018) C. elegans as a model in developmental neurotoxicology. Toxicol Appl Pharmacol 354:126–135. https://doi.org/10.1016/j.taap.2018.03.016. (PMID: 10.1016/j.taap.2018.03.016295505126087488)
      Saxena S, Caroni P (2007) Mechanisms of axon degeneration: from development to disease. Prog Neurobiol 83(3):174–191. https://doi.org/10.1016/j.pneurobio.2007.07.007. (PMID: 10.1016/j.pneurobio.2007.07.00717822833)
      Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287(5460):2007–2010. https://doi.org/10.1126/science.287.5460.2007. (PMID: 10.1126/science.287.5460.200710720325)
      Saxon E, Luchansky SJ, Hang HC, Yu C, Lee SC, Bertozzi CR (2002) Investigating cellular metabolism of synthetic azidosugars with the Staudinger ligation. J Am Chem Soc 124(50):14893–14902. https://doi.org/10.1021/ja027748x. (PMID: 10.1021/ja027748x12475330)
      Schildknecht S, Karreman C, Poltl D et al (2013) Generation of genetically-modified human differentiated cells for toxicological tests and the study of neurodegenerative diseases. Altex 30(4):427–444. https://doi.org/10.14573/altex.2013.4.427. (PMID: 10.14573/altex.2013.4.42724173167)
      Schmidt C, Stehling P, Schnitzer J, Reutter W, Horstkorte R (1998) Biochemical engineering of neural cell surfaces by the synthetic N-propanoyl-substituted neuraminic acid precursor. J Biol Chem 273(30):19146–19152. (PMID: 10.1074/jbc.273.30.19146)
      Schmidt BZ, Lehmann M, Gutbier S et al (2017) In vitro acute and developmental neurotoxicity screening: an overview of cellular platforms and high-throughput technical possibilities. Arch Toxicol 91(1):1–33. https://doi.org/10.1007/s00204-016-1805-9. (PMID: 10.1007/s00204-016-1805-927492622)
      Schnaar RL, Gerardy-Schahn R, Hildebrandt H (2014) Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol Rev 94(2):461–518. https://doi.org/10.1152/physrev.00033.2013. (PMID: 10.1152/physrev.00033.2013246923544044301)
      Scholz D, Poltl D, Genewsky A et al (2011) Rapid, complete and large-scale generation of post-mitotic neurons from the human LUHMES cell line. J Neurochem 119(5):957–971. https://doi.org/10.1111/j.1471-4159.2011.07255.x. (PMID: 10.1111/j.1471-4159.2011.07255.x21434924)
      Schultz L, Zurich MG, Culot M et al (2015) Evaluation of drug-induced neurotoxicity based on metabolomics, proteomics and electrical activity measurements in complementary CNS in vitro models. Toxicol In Vitro 30(1 Pt A):138–165. https://doi.org/10.1016/j.tiv.2015.05.016. (PMID: 10.1016/j.tiv.2015.05.01626026931)
      Singh N, Lawana V, Luo J et al (2018) Organophosphate pesticide chlorpyrifos impairs STAT1 signaling to induce dopaminergic neurotoxicity: Implications for mitochondria mediated oxidative stress signaling events. Neurobiol Dis 117:82–113. https://doi.org/10.1016/j.nbd.2018.05.019. (PMID: 10.1016/j.nbd.2018.05.019298598686108448)
      Skirzewski M, Karavanova I, Shamir A et al (2018) ErbB4 signaling in dopaminergic axonal projections increases extracellular dopamine levels and regulates spatial/working memory behaviors. Mol Psychiatry 23(11):2227–2237. https://doi.org/10.1038/mp.2017.132. (PMID: 10.1038/mp.2017.13228727685)
      Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed Engl 48(38):6974–6998. https://doi.org/10.1002/anie.200900942. (PMID: 10.1002/anie.200900942197146932864149)
      Smirnova L, Hogberg HT, Leist M, Hartung T (2014) Developmental neurotoxicity—challenges in the 21st century and in vitro opportunities. Altex 31(2):129–156. https://doi.org/10.14573/altex.1403271. (PMID: 10.14573/altex.1403271246873334778747)
      Stiegler NV, Krug AK, Matt F, Leist M (2011) Assessment of chemical-induced impairment of human neurite outgrowth by multiparametric live cell imaging in high-density cultures. Toxicol Sci 121(1):73–87. https://doi.org/10.1093/toxsci/kfr034. (PMID: 10.1093/toxsci/kfr03421342877)
      Terron A, Bal-Price A, Paini A et al (2018) An adverse outcome pathway for parkinsonian motor deficits associated with mitochondrial complex I inhibition. Arch Toxicol 92(1):41–82. https://doi.org/10.1007/s00204-017-2133-4. (PMID: 10.1007/s00204-017-2133-429209747)
      Tiffany-Castiglioni E, Hong S, Qian Y, Tang Y, Donnelly KC (2006) In vitro models for assessing neurotoxicity of mixtures. Neurotoxicology 27(5):835–839. https://doi.org/10.1016/j.neuro.2006.05.010. (PMID: 10.1016/j.neuro.2006.05.01016843529)
      Tong ZB, Hogberg H, Kuo D et al (2017) Characterization of three human cell line models for high-throughput neuronal cytotoxicity screening. J Appl Toxicol 37(2):167–180. https://doi.org/10.1002/jat.3334. (PMID: 10.1002/jat.333427143523)
      Tong ZB, Huang R, Wang Y et al (2018) The toxmatrix: chemo-genomic profiling identifies interactions that reveal mechanisms of toxicity. Chem Res Toxicol 31(2):127–136. https://doi.org/10.1021/acs.chemrestox.7b00290. (PMID: 10.1021/acs.chemrestox.7b0029029156121)
      Torre ER, Steward O (1996) Protein synthesis within dendrites: glycosylation of newly synthesized proteins in dendrites of hippocampal neurons in culture. J Neurosci 16(19):5967–5978. (PMID: 10.1523/JNEUROSCI.16-19-05967.1996)
      Ungar D (2009) Golgi linked protein glycosylation and associated diseases. Semin Cell Dev Biol 20(7):762–769. https://doi.org/10.1016/j.semcdb.2009.03.004. (PMID: 10.1016/j.semcdb.2009.03.00419508859)
      van Thriel C, Westerink RH, Beste C, Bale AS, Lein PJ, Leist M (2012) Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts. Neurotoxicology 33(4):911–924. https://doi.org/10.1016/j.neuro.2011.10.002. (PMID: 10.1016/j.neuro.2011.10.00222008243)
      Vassallo A, Chiappalone M, De Camargos LR et al (2017) A multi-laboratory evaluation of microelectrode array-based measurements of neural network activity for acute neurotoxicity testing. Neurotoxicology 60:280–292. https://doi.org/10.1016/j.neuro.2016.03.019. (PMID: 10.1016/j.neuro.2016.03.01927036093)
      Vogt J, Glumm R, Schluter L et al (2012) Homeostatic regulation of NCAM polysialylation is critical for correct synaptic targeting. Cell Mol Life Sci 69(7):1179–1191. https://doi.org/10.1007/s00018-011-0868-2. (PMID: 10.1007/s00018-011-0868-222068610)
      Wei M, Wang PG (2019) Desialylation in physiological and pathological processes: new target for diagnostic and therapeutic development. Prog Mol Biol Transl Sci 162:25–57. https://doi.org/10.1016/bs.pmbts.2018.12.001. (PMID: 10.1016/bs.pmbts.2018.12.00130905454)
      Wu X, Majumder A, Webb R, Stice SL (2016) High content imaging quantification of multiple in vitro human neurogenesis events after neurotoxin exposure. BMC Pharmacol Toxicol 17(1):62. https://doi.org/10.1186/s40360-016-0107-4. (PMID: 10.1186/s40360-016-0107-4279032875131404)
      Yoo SW, Motari MG, Susuki K et al (2015) Sialylation regulates brain structure and function. FASEB J 29(7):3040–3053. https://doi.org/10.1096/fj.15-270983. (PMID: 10.1096/fj.15-270983258463724478807)
      Zhang X, Wang Y (2016) Glycosylation quality control by the golgi structure. J Mol Biol 428(16):3183–3193. https://doi.org/10.1016/j.jmb.2016.02.030. (PMID: 10.1016/j.jmb.2016.02.030269563954983240)
      Zimmer B, Kuegler PB, Baudis B et al (2011a) Coordinated waves of gene expression during neuronal differentiation of embryonic stem cells as basis for novel approaches to developmental neurotoxicity testing. Cell Death Differ 18(3):383–395. https://doi.org/10.1038/cdd.2010.109. (PMID: 10.1038/cdd.2010.10920865013)
      Zimmer B, Schildknecht S, Kuegler PB, Tanavde V, Kadereit S, Leist M (2011b) Sensitivity of dopaminergic neuron differentiation from stem cells to chronic low-dose methylmercury exposure. Toxicol Sci 121(2):357–367. https://doi.org/10.1093/toxsci/kfr054. (PMID: 10.1093/toxsci/kfr05421385734)
    • Grant Information:
      (NEURODEG) International the land-BW; (NeuriTox) International Bundesministerium für Bildung und Forschung; (MST-667-00205) International the DK-EPA; KPK InViTe Sigmaringen/Konstanz International Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg; 681002 International EU-ToxRisk
    • Contributed Indexing:
      Keywords: Confocal imaging; Cytotoxicity; Metabolic glycoengineering; Neurite integrity; Neurotoxicity; Sialic acid
    • الرقم المعرف:
      0 (Glycoconjugates)
      0 (Hexosamines)
      11089-65-9 (Tunicamycin)
      147336-22-9 (Green Fluorescent Proteins)
      69G8BD63PP (Bortezomib)
      GZP2782OP0 (N-Acetylneuraminic Acid)
      X80PR7P73R (N-acetylmannosamine)
    • الموضوع:
      Date Created: 20191213 Date Completed: 20210223 Latest Revision: 20210617
    • الموضوع:
      20231215
    • الرقم المعرف:
      10.1007/s00204-019-02642-z
    • الرقم المعرف:
      31828357