Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A multimodal investigation of cerebellar integrity associated with high-risk cannabis use.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Wiley-Blackwell Country of Publication: United States NLM ID: 9604935 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1369-1600 (Electronic) Linking ISSN: 13556215 NLM ISO Abbreviation: Addict Biol Subsets: MEDLINE
    • بيانات النشر:
      Publication: Hoboken, NJ : Wiley-Blackwell
      Original Publication: Abingdon, Oxfordshire, UK ; Cambridge, MA : Carfax, c1996-
    • الموضوع:
    • نبذة مختصرة :
      With legalization efforts across the United States, cannabis use is becoming increasingly mainstream. Various studies have documented the effects of acute and chronic cannabis use on brain structure and cognitive performance, including within the frontal executive control network, but little attention has been given to the effects on the cerebellum. Recent evidence increasingly points to the role of the cerebellum in various nonmotor networks, and the cerebellum's expression of cannabinoid receptors may pose particular vulnerabilities to the consequences of cannabis use. Using a combined approach of resting-state functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), the present study aims to assess how cannabis use relates to the cerebellum's intrinsic functional connectivity and underlying white matter structure and whether these properties are associated with craving or severity of cannabis use. Resting-state fMRI and DTI data, as well as self-reports of substance use history, were analyzed from a sample of 26 adults at risk for cannabis use disorder (CUD) and an age- and sex-matched comparison group of 25 cannabis-naïve adults (control). Results demonstrated that individuals at risk for a CUD showed key differences in cerebellar functional connectivity, with specific impacts on the dorsal attention and default mode networks. In addition, group differences in white matter were localized to the middle cerebellar peduncle (MCP), with a relationship between lower MCP diffusivity and higher levels of self-reported craving. These findings lend further support to the cerebellum's role in key cognitive networks and potential consequences for substance use disorders.
      (© 2019 Society for the Study of Addiction.)
    • References:
      Schulenberg JE, Johnston LD, O'Malley PM, Bachman JG, Miech RA, Patrick ME. Monitoring the Future National Survey Results on Drug Use, 1975-2017: Volume II, College Students and Adults Ages 19-55. Ann Arbor: Institute for Social Research, The University of Michigan; 2018.
      ElSohly MA, Mehmedic Z, Foster S, Gon C, Chandra S, Church JC. Changes in cannabis potency over the last 2 decades (1995-2014): analysis of current data in the United States. Biol Psychiatry. 2016;79(7):613-619.
      Lu H, Mackie K. An introduction to the endogenous cannabinoid system. Biol Psychiatry. 2016;79(7):516-525.
      Mackie K. Cannabinoid receptors: where they are and what they do. J Neuroendocrinol. 2008;20(s1):10-14.
      Herkenham M, Lynn A, Little M, et al. Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A. 1990;87(5):1932-1936.
      Glass M, Dragunow M, Faull RL. Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal, and adult human brain. Neuroscience. 1997;77(2):299-318.
      Middleton FA, Strick PL. Cerebellar output: motor and cognitive channels. Trends Cogn Sci. 1998;2(9):348-354.
      Kamali A, Kramer LA, Frye RE, Butler IJ, Hasan KM. Diffusion tensor tractography of the human brain cortico-ponto-cerebellar pathways: a quantitative preliminary study. J Magn Reson Imaging. 2010;32(4):809-817.
      Palesi F, De Rinaldis A, Castellazzi G, et al. Contralateral cortico-ponto-cerebellar pathways reconstruction in humans in vivo: implications for reciprocal cerebro-cerebellar structural connectivity in motor and non-motor areas. Sci Rep. 2017;7(1):12841.
      O'Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20(4):953-965.
      Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831-844.
      Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23(23):8432-8444.
      Krienen FM, Buckner RL. Segregated front-cerebellar circuits revealed by intrinsic functional connectivity. Crebral Cortex. 2009;19(10):2485-2497.
      Fliessbach K, Trautner P, Quesada CM, Elger CE, Weber B. Cerebellar contributions to episodic memory encoding as revealed by fMRI. Neuroimage. 2007;35(3):1330-1337.
      Habas C, Kamdar N, Nguyen D, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586-8594.
      Ramanoel S, York E, Habas C. Participation of the caudal cerebellar lobule IX to the dorsal attentional network. Cerebellum Ataxias. 2018;5(1):9.
      Maij DL, van de Wetering BJ, Franken IH. Cognitive control in young adults with cannabis use disorder: an event-related brain potential study. J Psychopharmacol. 2017;31(8):1015-1026.
      Bolla KI, Brown K, Eldreth D, Tate K, Cadet JL. Dose-related neurocognitive effects of marijuana use. Neurology. 2002;59(9):1337-1343.
      Solowij N, Stephens RS, Roffman RA, et al. Cognitive functioning of long-term heavy cannabis users seeking treatment. JAMA. 2002;287(9):1123-1131.
      O'Leary DS, Block RI, Koeppel JA, et al. Effects of smoking marijuana on focal attention and brain blood flow. Hum Psychopharmacol. 2007;22(3):135-148.
      Behan B, Connolly CG, Datwani S, et al. Response inhibition and elevated parietal-cerebellar correlations in chronic adolescent cannabis users. Neuropharmacology. 2014;84:131-137.
      Houck JM, Bryan AD, Feldstein Ewing SW. Functional connectivity and cannabis use in high-risk adolescents. Am J Drug Alcohol Abuse. 2013;39(6):414-423.
      Orr C, Morioka R, Behan B, et al. Altered resting-state connectivity in adolescent cannabis users. Am J Drug Alcohol Abuse. 2013;36(6):372-381.
      Cheng H, Skosnik PD, Bruce BJ, et al. Resting state functional magnetic resonance imaging reveals distinct brain activity in heavy cannabis users-a multi-voxel pattern analysis. J Psychopharmacol. 2014;28(11):1030-1040.
      Manza P, Tomasi D, Volkow ND. Subcortical local functional hyperconnectivity in cannabis dependence. Biol Psychiatry: CNNI. 2018;3:285-293.
      Gruber SA, Yurgelun-Todd DA. Neuroimaging of marijuana smokers during inhibitory processing: a pilot investigation. Cogn Brain Res. 2005;23(1):107-118.
      Abdullaev Y, Posner MI, Nunnally R, Dishion TJ. Functional MRI evidence for inefficient attentional control in adolescent chronic cannabis abuse. Behav Brain Res. 2010;215(1):45-57.
      Ashtari M, Cervellione K, Cottone J, Ardekani BA, Kumra S. Diffusion abnormalities in adolescents and young adults with a history of heavy cannabis use. J Psychiatr Res. 2009;43(3):189-204.
      Jakabeck D, Yücel M, Lorenzetti V, Solowij N. An MRI study of white matter tract integrity in regular cannabis users: effects of cannabis use and age. Psychopharmacology (Berl). 2016;233(19-20):3627-3637.
      Orr JM, Paschall CJ, Banich MT. Recreational marijuana use impacts white matter integrity and subcortical (but not cortical morphometry). Neuroimage:Clin. 2016;12:47-56.
      Filbey FM, Asian S, Calhoun VD, et al. Long-term effects of marijuana use on the brain. PNAS. 2014;111(47):16913-16918.
      Humeniuk R, Ali R, Babor TF, et al. Validation of the alcohol, smoking and substance involvement screening test (ASSIST). Addiction. 2008;103(6):1039-1047.
      Heishman SJ, Evans RJ, Singleton EG, Levin KH, Copersino ML, Gorelick DA. Reliability and validity of a short form of the marijuana craving questionnaire. Drug Alcohol Depend. 2009;102(1-3):35-40.
      Adamson SJ, Kay-Lambkin FJ, Baker AL, et al. An improved brief measure of cannabis misuse: the Cannabis Use Disorders Identification Test-Revised (CUDIT-R). Drug Alcohol Depend. 2010;110(1-2):137-143.
      Saunders JB, Aasland OG, Babor TF, De La Fuente JR, Grant M. Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption-II. Addiction. 1993;88(6):791-804.
      Vossel S, Geng JJ, Fink GR. Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. Neuroscientist. 2014;20(2):150-159.
      Whitfield-Gabrieli S, Ford JM. Default mode network activity and connectivity in psychopathology. Annu Rev Clin Psychol. 2012;8(1):49-76.
      Wetherill RR, Fang Z, Jagannathan K, Childress AR, Rao H, Franklin TR. Cannabis, cigarettes, and their co-occurring use: disentangling differences in default mode network functional connectivity. Drug Alcohol Depend. 2015;153:116-123.
      Filbey FM, Gohel S, Prahsad S, Biswal BB. Differential associations of combined vs. isolated cannabis and nicotine on brain resting state networks. Brain Struct Funct. 2018;223(7):3317-3326.
      Sala-Llonch R, Peña-Gómez C, Arenaza-Urquijo EM, et al. Brain connectivity during resting state and subsequent working memory task predicts behavioural performance. Cortex. 2012;48(9):1187-1196.
      Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. PNAS. 2005;102(27):9673-9678.
      Kucyi A, Hove MJ, Biederman J, Van Dijk KRA, Valera EM. Disrupted functional connectivity of cerebellar default network areas in attention-deficit/hyperactivity disorder. Hum Brain Mapp. 2015;36(9):3373-3386.
      Broyd SJ, van Hell HH, Beale C, Yücel M, Solowij N. Acute and chronic effects of cannabinoids on human cognition-a systematic review. Biol Psychiatry. 2016;79(7):557-567.
      Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217-238.
      Goldman M, Szucs-Reed RP, Jagannathan K, et al. Reward-related brain response and craving correlates of marijuana cue exposure: a preliminary study in treatment-seeking marijuana-dependent subjects. J Addict Med. 2013;7(1):8-16.
      Cousijn J, Wiers RW, Ridderinkhof KR, Van den Brink W, Veltman DJ, Goudriaan AE. Grey matter alterations associated with cannabis use: results of a VBM study in heavy cannabis users and healthy controls. Neuroimage. 2012;59(4):3845-3851.
      Alexander AL, Hurley SA, Samsonov AA, et al. Characterization of cerebral white matter properties using quantitiateive magnetic resonance imaging stains. Brain Connect. 2011;1(6):423-446.
      Zhang J. Diffusion tensor imaging of white matter pathology in the mouse brain. Imaging Med. 2010;2(6):623-632.
      Harper C. The neuropathology of alcohol-related brain damage. Alcohol Alcohol. 2009;44(2):136-140.
    • Grant Information:
      International Alcohol and Drug Abuse Institute
    • Contributed Indexing:
      Keywords: DTI; cerebellum; connectivity; crus I/II; lobule IX; marijuana
    • الموضوع:
      Date Created: 20191210 Date Completed: 20210928 Latest Revision: 20210928
    • الموضوع:
      20240829
    • الرقم المعرف:
      10.1111/adb.12839
    • الرقم المعرف:
      31814242