Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Electrochemical gradients are involved in regulating cytoskeletal patterns during epithelial morphogenesis in the Drosophila ovary.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Weiß I;Weiß I; Bohrmann J; Bohrmann J
- المصدر:
BMC developmental biology [BMC Dev Biol] 2019 Nov 12; Vol. 19 (1), pp. 22. Date of Electronic Publication: 2019 Nov 12.
- نوع النشر :
Journal Article; Research Support, Non-U.S. Gov't
- اللغة:
English
- معلومة اضافية
- المصدر:
Publisher: BioMed Central Country of Publication: England NLM ID: 100966973 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-213X (Electronic) Linking ISSN: 1471213X NLM ISO Abbreviation: BMC Dev Biol Subsets: MEDLINE
- بيانات النشر:
Original Publication: London : BioMed Central, [2001-2021]
- الموضوع:
- نبذة مختصرة :
Background: During Drosophila oogenesis, the follicular epithelium differentiates into several morphologically distinct follicle-cell populations. Characteristic bioelectrical properties make this tissue a suitable model system for studying connections between electrochemical signals and the organisation of the cytoskeleton. Recently, we have described stage-specific transcellular antero-posterior and dorso-ventral gradients of intracellular pH (pH i ) and membrane potential (V mem ) depending on the asymmetrical distribution and/or activity of various ion-transport mechanisms. In the present study, we analysed the patterns of basal microfilaments (bMF) and microtubules (MT) in relation to electrochemical signals.
Results: The bMF- and MT-patterns in developmental stages 8 to 12 were visualised using labelled phalloidin and an antibody against acetylated α-tubulin as well as follicle-cell specific expression of GFP-actin and GFP-α-tubulin. Obviously, stage-specific changes of the pH i - and V mem -gradients correlate with modifications of the bMF- and MT-organisation. In order to test whether cytoskeletal modifications depend directly on bioelectrical changes, we used inhibitors of ion-transport mechanisms that have previously been shown to modify pH i and V mem as well as the respective gradients. We inhibited, in stage 10b, Na + /H + -exchangers and Na + -channels with amiloride, V-ATPases with bafilomycin, ATP-sensitive K + -channels with glibenclamide, voltage-dependent L-type Ca 2+ -channels with verapamil, Cl - -channels with 9-anthroic acid and Na + /K + /2Cl - -cotransporters with furosemide, respectively. The correlations between pH i , V mem , bMF and MT observed in different follicle-cell types are in line with the correlations resulting from the inhibition experiments. While relative alkalisation and/or hyperpolarisation stabilised the parallel transversal alignment of bMF, acidification led to increasing disorder and to condensations of bMF. On the other hand, relative acidification as well as hyperpolarisation stabilised the longitudinal orientation of MT, whereas alkalisation led to loss of this arrangement and to partial disintegration of MT.
Conclusions: We conclude that the pH i - and V mem -changes induced by inhibitors of ion-transport mechanisms simulate bioelectrical changes occurring naturally and leading to the cytoskeletal changes observed during differentiation of the follicle-cell epithelium. Therefore, gradual modifications of electrochemical signals can serve as physiological means to regulate cell and tissue architecture by modifying cytoskeletal patterns.
- References:
Dev Neurobiol. 2017 May;77(5):643-673. (PMID: 27265625)
J Cell Sci. 1986 Mar;81:189-206. (PMID: 3090057)
Dev Cell. 2017 May 22;41(4):337-348. (PMID: 28535370)
Fly (Austin). 2012 Oct-Dec;6(4):213-27. (PMID: 22940759)
J Cell Sci. 1991 Dec;100 ( Pt 4):781-8. (PMID: 1814932)
Compr Physiol. 2013 Jan;3(1):59-119. (PMID: 23720281)
Cytoskeleton (Hoboken). 2012 Sep;69(9):601-12. (PMID: 22736620)
Phys Chem Chem Phys. 2018 Apr 4;20(14):9343-9354. (PMID: 29564429)
Cold Spring Harb Symp Quant Biol. 1982;46 Pt 1:227-40. (PMID: 6125293)
Curr Biol. 2013 Aug 5;23(15):1472-7. (PMID: 23831293)
Biophys J. 1989 Feb;55(2):293-8. (PMID: 2713442)
Development. 1998 Aug;125(15):2837-46. (PMID: 9655806)
Physiol Rev. 2005 Jul;85(3):943-78. (PMID: 15987799)
Eur J Cell Biol. 1990 Dec;53(2):349-56. (PMID: 2081548)
Dev Biol. 2018 Jan 15;433(2):177-189. (PMID: 29291972)
PLoS Genet. 2017 Nov 27;13(11):e1007107. (PMID: 29176774)
Annu Rev Cell Dev Biol. 2014;30:317-36. (PMID: 25062359)
Mech Dev. 2017 Dec;148:18-39. (PMID: 28433748)
Zygote. 1994 Aug;2(3):189-99. (PMID: 8785677)
Cell Rep. 2012 Sep 27;2(3):433-9. (PMID: 22999933)
Curr Opin Genet Dev. 2001 Aug;11(4):374-83. (PMID: 11448623)
Cold Spring Harb Perspect Biol. 2009 Aug;1(2):a001891. (PMID: 20066085)
BMC Dev Biol. 2019 Jun 21;19(1):12. (PMID: 31226923)
Bioelectrochemistry. 2018 Oct;123:45-61. (PMID: 29723806)
J Cell Sci. 2011 Jun 1;124(Pt 11):1936-42. (PMID: 21558418)
Development. 2009 Dec;136(24):4123-32. (PMID: 19906848)
Biophys J. 2006 Jun 15;90(12):4639-43. (PMID: 16565058)
Roux Arch Dev Biol. 1991 Jun;199(6):315-326. (PMID: 28305435)
Dev Biol. 2019 Aug 15;452(2):127-133. (PMID: 31071312)
Annu Rev Biomed Eng. 2017 Jun 21;19:353-387. (PMID: 28633567)
Genes Dev. 1996 Jul 15;10(14):1711-23. (PMID: 8698232)
Int J Cell Biol. 2012;2012:121424. (PMID: 22315611)
J Physiol. 2014 Jun 1;592(11):2295-305. (PMID: 24882814)
Cell Tissue Res. 1993 Jul;273(1):163-73. (PMID: 8364958)
J Cell Biol. 1981 Apr;89(1):45-53. (PMID: 7228899)
Biophys J. 2004 Apr;86(4):1890-903. (PMID: 15041636)
Semin Cell Dev Biol. 2008 Jun;19(3):271-82. (PMID: 18304845)
J Cell Biol. 2016 Nov 7;215(3):345-355. (PMID: 27821494)
Dev Dyn. 2008 Aug;237(8):2061-72. (PMID: 18651659)
G3 (Bethesda). 2019 Apr 9;9(4):999-1008. (PMID: 30733380)
Annu Rev Physiol. 1986;48:389-402. (PMID: 3010819)
J Cell Sci. 1986 Mar;81:207-21. (PMID: 3090058)
BMC Dev Biol. 2015 Jan 16;15:1. (PMID: 25591552)
Prog Biophys Mol Biol. 2018 Sep;137:52-68. (PMID: 29626560)
Integr Comp Biol. 2014 Oct;54(4):667-76. (PMID: 24920751)
J Cell Biol. 1969 Jun;41(3):876-85. (PMID: 5768877)
Arch Insect Biochem Physiol. 2009 Apr;70(4):230-43. (PMID: 19241411)
BMC Dev Biol. 2016 Jul 13;16(1):24. (PMID: 27412523)
Exp Cell Res. 2003 Jan 1;282(1):1-13. (PMID: 12490189)
Biol Cell. 1999 Mar;91(2):85-98. (PMID: 10399824)
EMBO Rep. 2017 Dec;18(12):2105-2118. (PMID: 29158350)
Cell Tissue Res. 2013 Apr;352(1):95-122. (PMID: 22350846)
Cell Cycle. 2009 Nov 1;8(21):3527-36. (PMID: 19823012)
Sci Rep. 2018 Aug 9;8(1):11899. (PMID: 30093720)
BMC Dev Biol. 2008 Nov 27;8:111. (PMID: 19038051)
- Contributed Indexing:
Keywords: Bioelectricity; Cell polarity; Drosophila melanogaster; Intracellular pH; Ion channel; Ion pump; Membrane potential; Microfilament; Microtubule; Pattern formation
- الرقم المعرف:
0 (Biomarkers)
0 (Drosophila Proteins)
0 (Ion Channels)
- الموضوع:
Date Created: 20191114 Date Completed: 20200716 Latest Revision: 20200716
- الموضوع:
20221213
- الرقم المعرف:
PMC6852995
- الرقم المعرف:
10.1186/s12861-019-0203-y
- الرقم المعرف:
31718540
No Comments.