Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The growth rates of dot enumeration ability predict mathematics achievements: A 5-year longitudinal study.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Liu Y;Liu Y; Wong TT; Wong TT
  • المصدر:
    The British journal of educational psychology [Br J Educ Psychol] 2020 Sep; Vol. 90 (3), pp. 604-617. Date of Electronic Publication: 2019 Sep 12.
  • نوع النشر :
    Journal Article
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 0370636 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2044-8279 (Electronic) Linking ISSN: 00070998 NLM ISO Abbreviation: Br J Educ Psychol Subsets: MEDLINE
    • بيانات النشر:
      Publication: <2012-> : Chichester : Wiley-Blackwell
      Original Publication: Edinburgh : Scottish Academic Press
    • الموضوع:
    • نبذة مختصرة :
      Background: Dot enumeration is the basic mathematics competency in young children and a significant indicator of later mathematics achievement.
      Aim: The present study focused on (1) how children's dot enumeration ability changed as they progressed from late kindergarten years (K3) to the second year of primary school in Hong Kong (P2), and (2) the extent to which such changes are associated with students' mathematics outcomes assessed at the fourth grade, including standardized mathematics achievement, whole number magnitude understanding, and rational number concept.
      Sample(s): Two hundred and eleven Hong Kong kindergarteners were recruited.
      Methods: The participants' dot enumeration was assessed from K3 to P2. Their mathematics outcomes were assessed at P4, including standardized mathematics achievement, whole number magnitude understanding, and rational number concept.
      Results: The changes in their dot enumeration speed reflected a linear growth pattern. Further, both the initial level and growth rate of dot enumeration predicted standardized mathematics achievement and whole number magnitude understanding 2 years later while only the latter predicted rational number concept.
      Conclusions: The results indicate the importance of focusing on children's growth in a specific mathematics skill, in addition to their status at one single time point. Practical implications are discussed in this article.
      (© 2019 The British Psychological Society.)
    • References:
      Alloway, T. P., & Alloway, R. G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106(1), 20-29. https://doi.org/10.1016/j.jecp.2009.11.003.
      Alloway, T. P., Gathercole, S. E., & Elliott, J. (2010). Examining the link between working memory behaviour and academic attainment in children with ADHD. Developmental Medicine and Child Neurology, 52(7), 632-636. https://doi.org/10.1111/j.1469-8749.2009.03603.x.
      Bailey, D. H., Siegler, R. S., & Geary, D. C. (2014). Early predictors of middle school fraction knowledge. Developmental Science, 17, 775-785. https://doi.org/10.1111/desc.12155.
      Bartelet, D., Vaessen, A., Blomert, L., & Ansari, D. (2014). What basic number processing measures in kindergarten explain unique variability in first-grade arithmetic proficiency? Journal of Experimental Child Psychology, 117, 12-28. https://doi.org/10.1016/j.jecp.2013.08.010.
      Berteletti, I., Lucangeli, D., Piazza, M., Dehaene, S., & Zorzi, M. (2010). Numerical estimation in preschoolers. Developmental Psychology, 46, 545-551. https://doi.org/10.1037/a0017887.
      Butterworth, B. (2003). Dyscalculia screener. London, UK: NFER Nelson Publishing Company Ltd.
      Camos, V. (2003). Counting strategies from 5 years to adulthood: Adaptation to structural features. European Journal of Psychology of Education, XVIII, 251-265.
      Chan, W. W. L. (2014). Understanding and processing numbers among Chinese children. Psychology and Neuroscience, 7(4), 583-591. https://doi.org/10.3922/j.psns.2014.4.18.
      Corsi, P. M. (1972). Human memory and the medial temporal region of the brain. Dissertation Abstracts International, 34 (02), 891B. (University Microfilms No. AAI05-77717).
      Dehaene, S. (1997). The number sense: How the mind creates mathematics. New York, NY: Oxford University Press.
      Elman, J., Bates, E., Johnson, M., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1998). Rethinking innateness: A connectionist perspective on development. Cambridge, MA: MIT press.
      Fuson, K. C., Richards, J., & Briars, D. J. (1982). The acquisition and elaboration of the number word sequence. In C. Brainerd (Ed.), Progress in cognitive development research: Vol 1. children's logical and mathematical cognition (pp. 33-92), New York, NY: Springer-Verlag.
      Gray, S. A., & Reeve, R. A. (2014). Preschoolers’ dot enumeration abilities are markers of their arithmetic competence. PLoS ONE, 9(4), e94428. https://doi.org/10.1371/journal.pone.0094428.
      Gray, S. A., & Reeve, R. A. (2016). Number-specific and general cognitive markers of preschoolers’ math ability profiles. Journal of Experimental Child Psychology, 147, 1-21.https://doi.org/10.1016/j.jecp.2016.02.004.
      Hansen, N., Jordan, N. C., Fernandez, E., Siegler, R. S., Fuchs, L., Gersten, R., & Micklos, D. (2015). General and math-specific predictors of sixth-graders’ knowledge of fractions. Cognitive Development, 35, 34-49. https://doi.org/10.1016/j.cogdev.2015.02.001.
      Hong Kong Education Bureau (2008). The learning and achievement measurement kit. Hong Kong: Hong Kong SAR Government.
      Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118.
      Iuculano, T., Tang, J., Hall, C. W., & Butterworth, B. (2008). Core information processing deficits in developmental dyscalculia and low numeracy. Developmental Science, 11, 669-680. https://doi.org/10.1111/j.1467-7687.2008.00716.x.
      Jacob, S. N., & Nieder, A. (2009a). Notation-independent representation of fractions in the human parietal cortex. The Journal of Neuroscience, 29, 4652-4657. https://doi.org/10.1523/JNEUROSCI.0651-09.2009.
      Jacob, S. N., & Nieder, A. (2009b). Tuning to non-symbolic proportions in the human frontoparietal cortex. European Journal of Neuroscience, 30, 1432-1442. https://doi.org/10.1111/j.1460-9568.2009.06932.x.
      Jordan, N. C., Hansen, N., Fuchs, L. S., Siegler, R. S., Gersten, R., & Micklos, D. (2013). Developmental predictors of fraction concepts and procedures. Journal of Experimental Child Psychology, 116(1), 45-58. https://doi.org/10.1016/j.jecp.2013.02.001.
      Kaufman, E. L., Lord, M. W., Reese, T. W., & Volkmann, J. (1949). The discrimination of visual number. The American Journal of Psychology, 62(4), 498-525. http://dx.doi.org/10.2307/1418556.
      Laski, E. V., & Siegler, R. S. (2007). Is 27 a big number? Correlational and causal connections among numerical categorization, number line estimation, and numerical magnitude comparison. Child Development, 78, 1723-1743. https://doi.org/10.1111/j.1467-8624.2007.01087.x.
      Liu, Y., Lin, D., & Zhang, X. (2016). Morphological awareness longitudinally predicts counting ability in Chinese kindergarteners. Learning and Individual Differences, 47, 215-221. https://doi.org/10.1016/j.lindif.2016.01.007.
      Muthén, L. K., & Muthén, B. O. (1998-2010). Mplus user's guide (vol. 6). Los Angeles, CA: Author.
      Ni, Y., & Zhou, Y. D. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist, 40(1), 27-52. https://doi.org/10.1207/s15326985ep4001_3.
      Petscher, Y., Quinn, J. M., & Wagner, R. K. (2016). Modeling the co-development of correlated processes with longitudinal and cross-construct effects. Developmental Psychology, 52, 1690-1704. https://doi.org/10.1037/dev0000172.
      Piaget, J. (1952). The child's conception of number. C. Gattegno & F. M. Hodgson, Trans. New York, NY: Routledge & Kegan Paul Ltd.
      Reeve, R., Reynolds, F., Humberstone, J., & Butterworth, B. (2012). Stability and change in markers of core numerical competencies. Journal of Experimental Psychology: General, 141, 649-666. https://doi.org/10.1037/a0027520.
      Reigosa-Crespo, V., Valdés-Sosa, M., Butterworth, B., Estévez, N., Rodríguez, M., Santos, E., … Lage, A. (2012). Basic numerical capacities and prevalence of developmental dyscalculia: The Havana survey. Developmental Psychology, 48(1), 123-135. https://doi.org/10.1037/a0025356.
      Resnick, I., Jordan, N. C., Hansen, N., Rajan, V., Rodrigues, J., Siegler, R. S., & Fuchs, L. S. (2016). Developmental growth trajectories in understanding of fraction magnitude from fourth through sixth grade. Developmental Psychology, 52, 746-757. https://doi.org/10.1037/dev0000102.
      Rodic, M., Zhou, X., Tikhomirova, T., Wei, W., Malykh, S., Ismatulina, V., … Lemelin, J. (2015). Cross-cultural investigation into cognitive underpinnings of individual differences in early arithmetic. Developmental Science, 18(1), 165-174. https://doi.org/10.1111/desc.12204.
      Rojas, R., & Iglesias, A. (2013). The language growth of Spanish-Speaking English language learners. Child Development, 84, 630-646. https://doi.org/10.1111/j.1467-8624.2012.01871.x.
      Schleifer, P., & Landerl, K. (2011). Subitizing and counting in typical and atypical development. Developmental Science, 14(2), 280-291. http://dx.doi.org/10.1111/j.1467-7687.2010.00976.x.
      Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75, 428-444. https://doi.org/10.1111/j.1467-8624.2004.00684.x.
      Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237-250. https://doi.org/10.1111/1467-9280.02438.
      Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62, 273-296. https://doi.org/10.1016/j.cogpsych.2011.03.001.
      Starkey, P., & Cooper, R. G. (1995). The development of subitizing in young children. British Journal of Developmental Psychology, 13(4), 399-420. https://doi.org/10.1111/j.2044-835X.1995.tb00688.x.
      Vukovic, R. K., Fuchs, L. S., Geary, D. C., Jordan, N. C., Gersten, R., & Siegler, R. S. (2014). Sources of individual differences in children's understanding of fractions. Child Development, 85, 1461-1476. https://doi.org/10.1111/cdev.12218.
      Wong, R. S. M., Ho, F. K. W., Wong, W. H. S., Tung, K. T. S., Chow, C. B., Rao, N., … Ip, P. (2018). Parental involvement in primary school education: Its relationship with children's academic performance and psychosocial competence through engaging children with school. Journal of Child and Family Studies, 27, 1544-1555. https://doi.org/10.1007/s10826-017-1011-2.
      Zhang, X., Räsänen, P., Koponen, T., Aunola, K., Lerkkanen, M. K., & Nurmi, J. E. (In press). Early cognitive precursors of children's mathematics learning disability and persistent low achievement: A 5-year longitudinal study. Child Development. https://doi.org/10.1111/cdev.1312.
    • Contributed Indexing:
      Keywords: dot enumeration; growth rate; latent growth curve modelling; rational number concept
    • الموضوع:
      Date Created: 20190913 Date Completed: 20210607 Latest Revision: 20210607
    • الموضوع:
      20221213
    • الرقم المعرف:
      10.1111/bjep.12318
    • الرقم المعرف:
      31513291