Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Real-time algorithm for Poissonian noise reduction in low-dose fluoroscopy: performance evaluation.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: BioMed Central Country of Publication: England NLM ID: 101147518 Publication Model: Electronic Cited Medium: Internet ISSN: 1475-925X (Electronic) Linking ISSN: 1475925X NLM ISO Abbreviation: Biomed Eng Online Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : BioMed Central, [2002-
    • الموضوع:
    • نبذة مختصرة :
      Background: Quantum noise intrinsically limits the quality of fluoroscopic images. The lower is the X-ray dose the higher is the noise. Fluoroscopy video processing can enhance image quality and allows further patient's dose lowering. This study aims to assess the performances achieved by a Noise Variance Conditioned Average (NVCA) spatio-temporal filter for real-time denoising of fluoroscopic sequences. The filter is specifically designed for quantum noise suppression and edge preservation. It is an average filter that excludes neighborhood pixel values exceeding noise statistic limits, by means of a threshold which depends on the local noise standard deviation, to preserve the image spatial resolution. The performances were evaluated in terms of contrast-to-noise-ratio (CNR) increment, image blurring (full width of the half maximum of the line spread function) and computational time. The NVCA filter performances were compared to those achieved by simple moving average filters and the state-of-the-art video denoising block matching-4D (VBM4D) algorithm. The influence of the NVCA filter size and threshold on the final image quality was evaluated too.
      Results: For NVCA filter mask size of 5 × 5 × 5 pixels (the third dimension represents the temporal extent of the filter) and a threshold level equal to 2 times the local noise standard deviation, the NVCA filter achieved a 10% increase of the CNR with respect to the unfiltered sequence, while the VBM4D achieved a 14% increase. In the case of NVCA, the edge blurring did not depend on the speed of the moving objects; on the other hand, the spatial resolution worsened of about 2.2 times by doubling the objects speed with VBM4D. The NVCA mask size and the local noise-threshold level are critical for final image quality. The computational time of the NVCA filter was found to be just few percentages of that required for the VBM4D filter.
      Conclusions: The NVCA filter obtained a better image quality compared to simple moving average filters, and a lower but comparable quality when compared with the VBM4D filter. The NVCA filter showed to preserve edge sharpness, in particular in the case of moving objects (performing even better than VBM4D). The simplicity of the NVCA filter and its low computational burden make this filter suitable for real-time video processing and its hardware implementation is ready to be included in future fluoroscopy devices, offering further lowering of patient's X-ray dose.
    • References:
      IEEE Trans Image Process. 2009 Aug;18(8):1724-41. (PMID: 19414285)
      IEEE Trans Image Process. 2011 Aug;20(8):2378-86. (PMID: 21292594)
      Comput Methods Programs Biomed. 2017 Dec;152:45-52. (PMID: 29054260)
      Heliyon. 2017 Aug 30;3(8):e00393. (PMID: 28920094)
      Sci Rep. 2016 Mar 16;6:22804. (PMID: 26980176)
      IEEE Trans Med Imaging. 2016 Jun;35(6):1565-74. (PMID: 26812705)
      IEEE Trans Image Process. 2007 May;16(5):1395-411. (PMID: 17491468)
      IEEE Trans Image Process. 2007 Aug;16(8):2080-95. (PMID: 17688213)
      Int J Radiat Oncol Biol Phys. 2009 Jun 1;74(2):637-43. (PMID: 19427563)
      Pacing Clin Electrophysiol. 2017 Dec;40(12):1374-1379. (PMID: 29052249)
      IEEE Trans Inf Technol Biomed. 1997 Dec;1(4):284-93. (PMID: 11020832)
      Med Phys. 2019 Jan;46(1):190-198. (PMID: 30351450)
      IEEE Trans Image Process. 2011 Jan;20(1):99-109. (PMID: 20615809)
      J Biomech. 2012 Feb 23;45(4):634-41. (PMID: 22277152)
      IEEE Trans Med Imaging. 1995;14(4):733-46. (PMID: 18215877)
      IEEE Trans Image Process. 2013 Jan;22(1):91-103. (PMID: 22692910)
      IEEE Trans Image Process. 2008 Jul;17(7):1083-92. (PMID: 18586617)
      Radiographics. 2000 Sep-Oct;20(5):1471-7. (PMID: 10992034)
      Phys Med. 2018 Sep;53:103-107. (PMID: 30241744)
      Eur J Radiol. 2017 Dec;97:115-118. (PMID: 29153361)
      IEEE Trans Biomed Eng. 2012 Sep;59(9):2558-67. (PMID: 22759435)
      Int J Comput Assist Radiol Surg. 2018 Jun;13(6):847-854. (PMID: 29637486)
      Ultramicroscopy. 2017 Jul;178:112-124. (PMID: 27262768)
      Med Phys. 2015 Aug;42(8):4645-53. (PMID: 26233192)
      Int J Comput Assist Radiol Surg. 2013 Mar;8(2):269-78. (PMID: 22718402)
      IEEE Trans Image Process. 2008 Oct;17(10):1737-54. (PMID: 18784024)
      Med Eng Phys. 2011 Dec;33(10):1293-302. (PMID: 21764624)
      IEEE Trans Med Imaging. 2004 May;23(5):602-12. (PMID: 15147013)
      Eur J Radiol. 2019 Jan;110:105-111. (PMID: 30599845)
      EURASIP J Image Video Process. 2018;2018(1):25. (PMID: 31258615)
      IEEE Trans Image Process. 2012 Sep;21(9):3952-66. (PMID: 22614644)
      Radiat Prot Dosimetry. 2017 Apr 28;174(3):395-405. (PMID: 27522056)
      IEEE Trans Med Imaging. 2013 Jul;32(7):1277-89. (PMID: 23549888)
      Phys Med Biol. 1993 Jan;38(1):71-92. (PMID: 8426870)
    • Contributed Indexing:
      Keywords: Fluoroscopy; NVCA; Quantum noise; Real-time processing; VBM4D; Video denoising; X-ray dose reduction
    • الموضوع:
      Date Created: 20190913 Date Completed: 20200203 Latest Revision: 20231013
    • الموضوع:
      20231215
    • الرقم المعرف:
      PMC6737613
    • الرقم المعرف:
      10.1186/s12938-019-0713-7
    • الرقم المعرف:
      31511017