Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Concurrent, Performance-Based Methodology for Increasing the Accuracy and Certainty of Short-Term Neural Prediction Systems.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Hindawi Pub. Corp Country of Publication: United States NLM ID: 101279357 Publication Model: eCollection Cited Medium: Internet ISSN: 1687-5273 (Electronic) NLM ISO Abbreviation: Comput Intell Neurosci Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: New York, NY : Hindawi Pub. Corp.
    • الموضوع:
    • نبذة مختصرة :
      Accurate prediction of the short time series with highly irregular behavior is a challenging task found in many areas of modern science. Such data fluctuations are not systematic and hardly predictable. In recent years, artificial neural networks have widely been exploited for those purposes. Although it is possible to model nonlinear behavior of short time series by using ANNs, very often they are not able to handle all events equally well. Therefore, alternative approaches have to be applied. In this study, a new, concurrent, performance-based methodology that combines best ANN topologies in order to decrease the forecasting errors and increase the forecasting certainty is proposed. The proposed approach is verified on three different data sets: the Serbian Gross National Income time series, the municipal traffic flow for a particular observation point, and the daily electric load consumption time series. It is shown that the method can significantly increase the forecasting accuracy of the individual networks, regardless of their topologies, which makes the methodology more applicable. For quantitative comparison of the accuracy of the proposed methodology with that of similar methodologies, a series of additional forecasting experiments that include a state-of-the-art ARIMA modelling and a combination of ANN and linear regression forecasting have been conducted.
    • References:
      J Chem Inf Model. 2006 Sep-Oct;46(5):1891-7. (PMID: 16995718)
      Comput Intell Neurosci. 2014;2014:270658. (PMID: 24744773)
      Comput Intell Neurosci. 2015;2015:341031. (PMID: 26000011)
      Comput Intell Neurosci. 2016;2016:9656453. (PMID: 27313605)
    • الموضوع:
      Date Created: 20190509 Date Completed: 20190829 Latest Revision: 20200225
    • الموضوع:
      20231215
    • الرقم المعرف:
      PMC6466907
    • الرقم المعرف:
      10.1155/2019/9323482
    • الرقم المعرف:
      31065257