Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Diverse human leukocyte antigen association of type 1 diabetes in north India.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Blackwell Publishing Asia Country of Publication: Australia NLM ID: 101504326 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1753-0407 (Electronic) Linking ISSN: 17530407 NLM ISO Abbreviation: J Diabetes Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Richmond, Vic. : Blackwell Publishing Asia, 2009-
    • الموضوع:
    • نبذة مختصرة :
      Background: Type 1 diabetes (T1D) is a complex disease, with involvement of various susceptibility genes. Human leukocyte antigen (HLA) on chromosome 6p21 is major susceptibility region. This study examined genetic association of HLA genes with T1D.
      Methods: The study recruited 259 T1D patients and 706 controls from north India. PCR-SSP and LiPA were used to type HLA Class I and II alleles.
      Results: At HLA Class I locus, HLA-A*02, A*26, B*08 and B*50 were significantly increased in patients vs controls (39.8% vs 28.9% [Bonferroni-corrected P {P c } = 0.032], 24.7% vs 9.6% [P c  = 4.83 × 10 -8 ], 37.2% vs 15.7% [P c  = 1.92 × 10 -9 ], and 19.4% vs 5.5% [P c  = 4.62 × 10 -9 ], respectively). Similarly, in Class II region, DRB1*03 showed a strong positive association with T1D (78.7% vs 17.5% in controls; P = 1.02 × 10 -9 ). Association of DRB1*04 with T1D (28.3% vs 15.5% in controls; P c  = 3.86 × 10 -4 ) was not independent of DRB1*03. Negative associations were found between T1D and DRB1*07, *11, *13, and *15 (13.8% vs 26.1% in controls [P c  = 0.00175], 3.9% vs 16.9% in controls [P c  = 6.55× 10 -6 ], 5.5% vs 21.6% in controls [P c  = 2.51 × 10 -7 ], and 16.9% vs 43.9% in controls [P c  = 9.94× 10 -10 ], respectively). Compared with controls, patients had significantly higher haplotype frequencies of A*26-B*08-DRB1*03-DQA1*05-DQB1*02 (10.43% vs 1.96%; P = 7.62 × 10 -11 ), A*02-B*50-DRB1*03-DQA1*05-DQB1*02 (6.1% vs 0.71%; P = 2.19 × 10 -10 ), A*24-B*08-DRB1*03-DQA1*05-DQB1*02 (4.72% vs 0.8%; P = 5.4 × 10 -7 ), A*02-B*08-DRB1*03-DQA1*05-DQB1*02 (2.36% vs 0.18%; P = 3.6 × 10 -5 ), and A*33-B*58-DRB1*03-DQA1*05-DQB1*02 (4.33% vs 1.25%; P = 0.00019).
      Conclusions: In north India, T1D is independently associated only with HLA-DRB1*03 haplotypes, and is negatively associated with DRB1*07, *11, *13, and *15.
      (© 2019 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.)
    • References:
      Risch N. Assessing the role of HLA-linked and unlinked determinants of disease. Am J Hum Genet. 1987;40:1-14.
      Todd JA. Genetic analysis of type 1 diabetes using whole genome approaches. Proc Natl Acad Sci USA. 1995;92:8560-8565.
      Bodmer WF. The HLA system: structure and function. J Clin Pathol. 1987;40:948-958.
      Bjorkman PJ, Parham P. Structure, function, and diversity of Class I major histocompatibility complex molecules. Annu Rev Biochem. 1990;59:253-288.
      McFarland BJ, Beeson C. Binding interactions between peptides and proteins of the Class II major histocompatibility complex. Med Res Rev. 2002;22:168-203.
      Schmidt D, Verdaguer J, Averill N, Santamaria P. A mechanism for the major histocompatibility complex-linked resistance to autoimmunity. J Exp Med. 1997;186:1059-1075.
      Luhder F, Katz J, Benoist C, Mathis D. Major histocompatibility complex Class II molecules can protect from diabetes by positively selecting T cells with additional specificities. J Exp Med. 1998;187:379-387.
      Singer SM, Tisch R, Yang XD, McDevitt HO. An Abd transgene prevents diabetes in nonobese diabetic mice by inducing regulatory T cells. Proc Natl Acad Sci USA. 1993;90:9566-9570.
      Hanson MS, Cetkovic-Cvrlje M, Ramiya VK, et al. Quantitative thresholds of MHC Class II I-E expressed on hemopoietically derived antigen-presenting cells in transgenic NOD/Lt mice determine level of diabetes resistance and indicate mechanism of protection. J Immunol. 1996;157:1279-1287.
      Manczinger M, Kemeny L. Peptide presentation by HLA-DQ molecules is associated with the development of immune tolerance. PeerJ. 2018;6:e5118.
      Kiani J, Hajilooi M, Furst D, et al. HLA Class II susceptibility pattern for type 1 diabetes (T1D) in an Iranian population. Int J Immunogenet. 2015;42:279-286.
      Fagbemi KA, Medehouenou TCM, Azonbakin S, et al. HLA Class II allele, haplotype, and genotype associations with type 1 diabetes in Benin: a pilot study. J Diabetes Res. 2017;2017:6053764.
      Noble JA, Valdes AM, Cook M, Klitz W, Thomson G, Erlich HA. The role of HLA Class II genes in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families. Am J Hum Genet. 1996;59:1134-1148.
      Erlich HA, Zeidler A, Chang J, et al. HLA class II alleles and susceptibility and resistance to insulin dependent diabetes mellitus in Mexican-American families. Nat Genet. 1993;3:358-364.
      She JX. Susceptibility to type I diabetes: HLA-DQ and DR revisited. Immunol Today. 1996;17:323-329.
      Noble JA, Valdes AM. Genetics of the HLA region in the prediction of type 1 diabetes. Curr Diab Rep. 2011;11:533-542.
      Fekih Mrissa N, Mrad M, Ouertani H, et al. Association of HLA-DR-DQ polymorphisms with diabetes in Tunisian patients. Transfus Apher Sci. 2013;49:200-204.
      Drissi Bourhanbour A, Benseffaj N, Ouadghiri S, et al. Family-based association study of HLA Class II with type 1 diabetes in Moroccans. Pathol Biol (Paris). 2015;63:80-84.
      Thorsby E, Ronningen KS. Particular HLA-DQ molecules play a dominant role in determining susceptibility or resistance to type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1993;36:371-377.
      Pugliese A, Boulware D, Yu L, et al. HLA-DRB1*15:01-DQA1*01:02-DQB1*06:02 haplotype protects autoantibody-positive relatives from type 1 diabetes throughout the stages of disease progression. Diabetes. 2016;65:1109-1119.
      Cifuentes RA, Rojas-Villarraga A, Anaya JM. Human leukocyte antigen Class II and type 1 diabetes in Latin America: a combined meta-analysis of association and family-based studies. Hum Immunol. 2011;72:581-586.
      Charron D (ed.). 12th International Histocompatibility Conference. Genetic diversity of HLA: functional and medical implications. Paris, France, 9-12, June 1996. Abstracts. Hum Immunol. 1996;47:1-184.
      Rewers A, Babu S, Wang TB, et al. Ethnic differences in the associations between the HLA-DRB1*04 subtypes and type 1 diabetes. Ann N Y Acad Sci. 2003;1005:301-309.
      Rewers M, Bugawan TL, Norris JM, et al. Newborn screening for HLA markers associated with IDDM: diabetes autoimmunity study in the young (DAISY). Diabetologia. 1996;39:807-812.
      Rani R, Sood A, Lazaro AM, Stastny P. Associations of MHC Class II alleles with insulin-dependent diabetes mellitus (IDDM) in patients from north India. Hum Immunol. 1999;60:524-531.
      Kanga U, Vaidyanathan B, Jaini R, Menon PS, Mehra NK. HLA haplotypes associated with type 1 diabetes mellitus in north Indian children. Hum Immunol. 2004;65:47-53.
      Kaur G, Kumar N, Nandakumar R, et al. Utility of saliva and hair follicles in donor 1selection for hematopoietic stem cell transplantation and chimerism monitoring. Chimerism. 2012;3:9-17.
      Excoffier LG, Laval G, Schneider S. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolut. Bioinform. Online. 2005;1:47-50.
      Fletcher J, Odugbesan O, Mijovic C, Mackay E, Bradwell AR, Barnett AH. Class II HLA DNA polymorphisms in type 1 (insulin-dependent) diabetic patients of north Indian origin. Diabetologia. 1988;31(6):343-350.
      Rani R, Sood A, Goswami R. Molecular basis of predisposition to develop type 1 diabetes mellitus in North Indians. Tissue Antigens. 2004;64(2):145-155.
      Noble JA, Valdes AM, Bugawan TL, Apple RJ, Thomson G, Erlich HA. The HLA Class I A locus affects susceptibility to type 1 diabetes. Hum Immunol. 2002;63:657-664.
      Tait BD, Colman PG, Morahan G, et al. HLA genes associated with autoimmunity and progression to disease in type 1 diabetes. Tissue Antigens. 2003;61:146-153.
      Valdes AM, Erlich HA, Noble JA. Human leukocyte antigen Class I B and C loci contribute to type 1 diabetes (T1D) susceptibility and age at T1D onset. Hum Immunol. 2005;66:301-313.
      Nejentsev S, Howson JM, Walker NM, et al. Localization of type 1 diabetes susceptibility to the MHC Class I genes HLA-B and HLA-A. Nature. 2007;450:887-892.
      Howson JM, Walker NM, Clayton D, Todd JA. Confirmation of HLA Class II independent type 1 diabetes associations in the major histocompatibility complex including HLA-B and HLA-A. Diabetes Obes Metab. 2009;11(Suppl 1):31-45.
      Mikk ML, Heikkinen T, El-Amir MI, et al. The association of the HLA-A*24:02, B*39:01 and B*39:06 alleles with type 1 diabetes is restricted to specific HLA-DR/DQ haplotypes in Finns. HLA. 2017;89:215-224.
      Al-Jenaidi FA, Wakim-Ghorayeb SF, Al-Abbasi A, et al. Contribution of selective HLA-DRB1/DQB1 alleles and haplotypes to the genetic susceptibility of type 1 diabetes among Lebanese and Bahraini Arabs. J Clin Endocrinol Metab. 2005;90:5104-5109.
      Padma-Malini R, Rathika C, Ramgopal S, et al. Associations of CTLA4 + 49 A/G dimorphism and HLA-DRB1*/DQB1* alleles with type 1 diabetes from south India. Biochem Genet. 2018;56:489-505.
      Todd JA, Bell JI, McDevitt HO. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature. 1987;329:599-604.
      Sanjeevi CB, Lybrand TP, DeWeese C, et al. Polymorphic amino acid variations in HLA-DQ are associated with systematic physical property changes and occurrence of IDDM. Members of the Swedish Childhood Diabetes Study. Diabetes. 1995;44:125-131.
      Hoover ML, Marta RT. Molecular modelling of HLA-DQ suggests a mechanism of resistance in type 1 diabetes. Scand J Immunol. 1997;45:193-202.
      Nepom GT, Kwok WW. Molecular basis for HLA-DQ associations with IDDM. Diabetes. 1998;47:1177-1184.
      Sheehy MJ. HLA and insulin-dependent diabetes. A protective perspective. Diabetes. 1992;41:123-129.
      Tisch R, McDevitt H. Insulin-dependent diabetes mellitus. Cell. 1996;85:291-297.
      Sollid LM. Molecular basis of celiac disease. Annu Rev Immunol. 2000;18:53-81.
      Johansen BH, Buus S, Vartdal F, et al. Binding of peptides to HLA-DQ molecules: peptide binding properties of the disease-associated HLA-DQ(alpha 1*0501, beta 1*0201) molecule. Int Immunol. 1994;6:453-461.
      Kumar N, Kaur G, Tandon N, Mehra NK. Allotyping human complement factor B in Asian Indian type 1 diabetic patients. Tissue Antigens. 2008;72:517-524.
      Kumar N, Kaur G, Tandon N, Mehra N. Tumor necrosis factor-associated susceptibility to type 1 diabetes is caused by linkage disequilibrium with HLA-DR3 haplotypes. Hum Immunol. 2012;73:566-573.
      Kumar N, Sharma G, Kaur G, Tandon N, Bhatnagar S, Mehra N. Major histocompatibility complex class I chain related gene-A microsatellite polymorphism shows secondary association with type 1 diabetes and celiac disease in north Indians. Tissue Antigens. 2012;80:356-362.
      Feng ML, Ji Y, Lu Q, et al. Study on HLA haplotypes in Jiangsu-Zhejiang-Shanghai Han population [in Chinese]. Yi Chuan Xue Bao. 2003;30:584-588.
    • Grant Information:
      Department of Biotechnology, Ministry of Science and Technology, Science and Engineering Research Board, Government of India; Indian Council of Medical Research
    • Contributed Indexing:
      Keywords: 1型糖尿病; association; human leukocyte antigen; north India; type 1 diabetes; 人类白细胞抗原; 印度北部; 相关性
      Local Abstract: [Publisher, Chinese] 摘要: 背景 1型糖尿病(T1D)是一种复杂的疾病, 涉及多种易感基因。6p21染色体上的人类白细胞抗原(Human leukocyte antigen, HLA)是主要的易感区域。本研究调查了HLA基因与T1D之间的遗传相关性。 方法 本研究在印度北部招募了259名T1D患者与706名对照者。使用PCR-SSP与LiPA来测定HLA I类与II类等位基因。 结果 在HLA I类位点, T1D患者组的HLA-A*02、A*26、B*08以及B*50与对照组相比均显著增加(分别为39.8%与28.9% [Bonferroni校正P值{P c } = 0.032]、24.7%与9.6%[Pc = 4.83×10 −8 ]、37.2%与15.7% [Pc = 1.92×10 −9 ]、以及19.4%与5.5%[Pc = 4.62×10 −9 ])。同样, 在HLA II类区域, 发现DRB1*03与T1D之间具有强烈的正相关(78.7%, 对照组为17.5%;P = 1.02×10 −9 )。DRB1*04与T1D之间的相关性(28.3%, 对照组为15.5%;P c = 3.86×10 −4 )依赖于DRB1*03。发现T1D与DRB1*07、*11、*13以及*15之间呈负相关(分别为13.8%, 对照组为26.1%[P c = 0.00175];3.9%, 对照组为16.9%[P c = 6.55×10 −6 ];5.5%, 对照组为21.6%[P c = 2.51×10 −7 ]以及16.9%, 对照组为43.9%[P c = 9.94×10 −10 ])。与对照组相比, T1D患者的A*26-B*08-DRB1*03-DQA1*05-DQB1*02(10.43%与1.96%;P = 7.62×10 −11 )、A*02-B*50-DRB1*03-DQA1*05-DQB1*02(6.1%与0.71%;P = 2.19×10 −10 )、A*24-B*08-DRB1*03-DQA1*05-DQB1*02(4.72%与0.8%;P = 5.4×10 −7 )、A*02-B*08-DRB1*03-DQA1*05-DQB1*02(2.36%与0.18%;P = 3.6×10 −5 )以及A *33-B*58-DRB1*03-DQA1*05-DQB1*02(4.33%与1.25%;P = 0.00019)单倍型频率明显更高。 结论 在印度北部, T1D仅与HLADRB1*03单倍型独立相关, 并且与DRB1*07、*11、*13以及*15之间呈负相关。.
    • الرقم المعرف:
      0 (Biomarkers)
      0 (HLA Antigens)
      0 (Histocompatibility Antigens Class I)
      0 (Histocompatibility Antigens Class II)
    • الموضوع:
      Date Created: 20190108 Date Completed: 20200312 Latest Revision: 20200312
    • الموضوع:
      20250114
    • الرقم المعرف:
      10.1111/1753-0407.12898
    • الرقم المعرف:
      30614662