Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Disruption of microbial community composition and identification of plant growth promoting microorganisms after exposure of soil to rapeseed-derived glucosinolates.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: San Francisco, CA : Public Library of Science
    • الموضوع:
    • نبذة مختصرة :
      Land plants are engaged in intricate communities with soil bacteria and fungi indispensable for plant survival and growth. The plant-microbial interactions are largely governed by specific metabolites. We employed a combination of lipid-fingerprinting, enzyme activity assays, high-throughput DNA sequencing and isolation of cultivable microorganisms to uncover the dynamics of the bacterial and fungal community structures in the soil after exposure to isothiocyanates (ITC) obtained from rapeseed glucosinolates. Rapeseed-derived ITCs, including the cyclic, stable goitrin, are secondary metabolites with strong allelopathic affects against other plants, fungi and nematodes, and in addition can represent a health risk for human and animals. However, the effects of ITC application on the different bacterial and fungal organisms in soil are not known in detail. ITCs diminished the diversity of bacteria and fungi. After exposure, only few bacterial taxa of the Gammaproteobacteria, Bacteriodetes and Acidobacteria proliferated while Trichosporon (Zygomycota) dominated the fungal soil community. Many surviving microorganisms in ITC-treated soil where previously shown to harbor plant growth promoting properties. Cultivable fungi and bacteria were isolated from treated soils. A large number of cultivable microbial strains was capable of mobilizing soluble phosphate from insoluble calcium phosphate, and their application to Arabidopsis plants resulted in increased biomass production, thus revealing growth promoting activities. Therefore, inclusion of rapeseed-derived glucosinolates during biofumigation causes losses of microbiota, but also results in enrichment with ITC-tolerant plant microorganisms, a number of which show growth promoting activities, suggesting that Brassicaceae plants can shape soil microbiota community structure favoring bacteria and fungi beneficial for Brassica plants.
      Competing Interests: The authors have declared that no competing interests exist.
    • References:
      Int J Syst Evol Microbiol. 2012 Dec;62(Pt 12):3030-3035. (PMID: 22307507)
      J Plant Nutr Soil Sci (1999). 2015 Feb;178(1):43-88. (PMID: 26167132)
      Front Microbiol. 2015 Sep 29;6:995. (PMID: 26483761)
      ISME J. 2009 Nov;3(11):1243-57. (PMID: 19554039)
      Anal Biochem. 1986 Jan;152(1):141-5. (PMID: 3954036)
      FEMS Microbiol Ecol. 2013 Mar;83(3):632-41. (PMID: 23025785)
      Microb Ecol. 2011 Jan;61(1):201-13. (PMID: 20811742)
      J Bacteriol. 2011 Jan;193(1):311-2. (PMID: 21037012)
      Phytopathology. 2013 May;103(5):400-8. (PMID: 23379853)
      Genome Announc. 2015 Apr 02;3(2):. (PMID: 25838494)
      Arabidopsis Book. 2010;8:e0134. (PMID: 22303260)
      ISME J. 2014 Sep;8(9):1920-31. (PMID: 24671082)
      Annu Rev Biochem. 1997;66:199-232. (PMID: 9242906)
      Plant Cell. 2015 Oct;27(10):2846-59. (PMID: 26452599)
      Sci Adv. 2016 Jun 24;2(6):e1600124. (PMID: 27386573)
      J Exp Bot. 2016 Feb;67(4):995-1002. (PMID: 26547794)
      Nahrung. 1983;27(3):257-63. (PMID: 6684210)
      J Vis Exp. 2017 Mar 15;(121):. (PMID: 28362416)
      Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11240-5. (PMID: 22733785)
      Can J Biochem Physiol. 1959 Aug;37(8):911-7. (PMID: 13671378)
      Anim Nutr. 2016 Mar;2(1):57-62. (PMID: 29767072)
      Mikrobiologiia. 2001 Jul-Aug;70(4):452-8. (PMID: 11558269)
      PLoS One. 2015 Jul 10;10(7):e0132062. (PMID: 26161539)
      Stud Mycol. 2007;58:105-56. (PMID: 18490998)
      PLoS Biol. 2017 Sep 22;15(9):e2002860. (PMID: 28938018)
      Microbiol Rev. 1991 Jun;55(2):288-302. (PMID: 1886522)
      Int J Syst Evol Microbiol. 2010 Feb;60(Pt 2):281-286. (PMID: 19651743)
      Front Microbiol. 2015 Jan 07;5:729. (PMID: 25709600)
      PLoS One. 2013;8(4):e59859. (PMID: 23573215)
      PLoS One. 2015 Mar 26;10(3):e0120400. (PMID: 25811603)
      FEBS Open Bio. 2016 Apr 19;6(5):484-93. (PMID: 27419054)
      J Agric Food Chem. 2016 Feb 24;64(7):1520-7. (PMID: 26820976)
      Int J Food Microbiol. 2008 Apr 30;123(3):212-9. (PMID: 18313782)
      PLoS One. 2012;7(10):e48006. (PMID: 23133539)
      Oecologia. 2011 Feb;165(2):453-63. (PMID: 20680644)
      Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10181-6. (PMID: 12928499)
      Appl Microbiol Biotechnol. 2009 Nov;85(2):371-81. (PMID: 19655138)
      Plant Dis. 2003 Apr;87(4):407-412. (PMID: 30831837)
      BMC Microbiol. 2015 Jun 18;15:123. (PMID: 26081847)
      FEMS Microbiol Lett. 1999 Jan 1;170(1):265-70. (PMID: 9919677)
      Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6. (PMID: 23193283)
      Sci Rep. 2015 Mar 18;5:9212. (PMID: 25784647)
      PLoS Biol. 2006 May;4(5):e140. (PMID: 16623597)
      Biochim Biophys Acta. 2013 Mar;1831(3):503-13. (PMID: 22922101)
      FEMS Microbiol Lett. 2008 May;282(1):65-72. (PMID: 18355276)
      Plant J. 2013 Sep;75(5):726-41. (PMID: 23672245)
      Plant Physiol. 2001 Apr;125(4):1688-99. (PMID: 11299350)
      Front Microbiol. 2017 Jan 04;7:2064. (PMID: 28101080)
      Nat Microbiol. 2016 Dec 19;2:16242. (PMID: 27991881)
      Trends Plant Sci. 2015 Aug;20(8):508-14. (PMID: 25979806)
      Front Microbiol. 2015 Nov 10;6:1248. (PMID: 26617587)
      ISME J. 2013 Dec;7(12):2248-58. (PMID: 23864127)
      Trends Microbiol. 2007 Feb;15(2):63-9. (PMID: 17194592)
      J Bacteriol. 2000 Dec;182(24):6921-6. (PMID: 11092851)
      J Biol Chem. 2002 Aug 30;277(35):31994-2002. (PMID: 12077151)
      Fungal Biol. 2016 Mar;120(3):402-13. (PMID: 26895869)
      Plant Mol Biol. 2016 Apr;90(6):575-87. (PMID: 26729479)
      Mol Plant Microbe Interact. 2007 Feb;20(2):207-17. (PMID: 17313171)
      Methods Mol Biol. 2014;1149:111-34. (PMID: 24818902)
      J Microbiol. 2012 Feb;50(1):45-9. (PMID: 22367936)
      Appl Environ Microbiol. 2005 Dec;71(12):8228-35. (PMID: 16332807)
      Soil Biol Biochem. 2010 Sep;42(9):1650-1652. (PMID: 21633516)
      Phytopathology. 2004 Nov;94(11):1259-66. (PMID: 18944464)
      Int J Mol Sci. 2013 Aug 26;14(9):17477-500. (PMID: 24065091)
      Annu Rev Plant Biol. 2013;64:807-38. (PMID: 23373698)
      Nat Microbiol. 2016 Apr 11;1:16048. (PMID: 27572647)
      PLoS One. 2016 Jun 30;11(6):e0158351. (PMID: 27362423)
      Int J Syst Evol Microbiol. 2010 Oct;60(Pt 10):2490-2495. (PMID: 19966000)
      Nat Methods. 2010 May;7(5):335-6. (PMID: 20383131)
      Front Plant Sci. 2017 Feb 09;8:102. (PMID: 28232840)
      PLoS One. 2012;7(4):e35498. (PMID: 22545111)
    • الرقم المعرف:
      0 (Coumaric Acids)
      0 (Glucosinolates)
      0 (Oxazolidinones)
      0 (Phospholipids)
      0 (Soil)
      68A28V6010 (sinapinic acid)
      7Q618OJ6K9 (goitrin)
      EC 3.2.1.- (Glycoside Hydrolases)
      EC 3.2.1.147 (thioglucosidase)
    • الموضوع:
      Date Created: 20180704 Date Completed: 20190117 Latest Revision: 20230926
    • الموضوع:
      20230926
    • الرقم المعرف:
      PMC6029813
    • الرقم المعرف:
      10.1371/journal.pone.0200160
    • الرقم المعرف:
      29969500