Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Involvement of Slit-Robo signaling in the development of the posterior commissure and concomitant swimming behavior in Xenopus laevis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: BioMed Central Country of Publication: England NLM ID: 101664800 Publication Model: eCollection Cited Medium: Print ISSN: 2056-306X (Print) Linking ISSN: 2056306X NLM ISO Abbreviation: Zoological Lett Subsets: PubMed not MEDLINE
    • بيانات النشر:
      Original Publication: London : BioMed Central, [2015]-
    • نبذة مختصرة :
      Introduction: During vertebrate development, the central nervous system (CNS) has stereotyped neuronal tracts (scaffolds) that include longitudinal and commissural axonal bundles, such as the medial longitudinal fascicle or the posterior commissure (PC). As these early tracts appear to guide later-developing neurons, they are thought to provide the basic framework of vertebrate neuronal circuitry. The proper construction of these neuronal circuits is thought to be a crucial step for eliciting coordinated behaviors, as these circuits transmit sensory information to the integrative center, which produces motor commands for the effective apparatus. However, the developmental plan underlying some commissures and the evolutionary transitions they have undergone remain to be elucidated. Little is known about the role of axon guidance molecules in the elicitation of early-hatched larval behavior as well.
      Results: Here, we report the developmentally regulated expression pattern of axon-guidance molecules Slit2 ligand and Robo2 receptor in Xenopus laevis and show that treatment of X. laevis larvae with a slit2- or robo2-morpholino resulted in abnormal swimming behavior. We also observed an abnormal morphology of the PC, which is part of the early axonal scaffold.
      Conclusion: Our present findings suggest that expression patterns of Slit2 and Robo2 are conserved in tetrapods, and that their signaling contributes to the construction of the PC in Xenopus. Given that the PC also includes several types of neurons stemming from various parts of the CNS, it may represent a candidate prerequisite neuronal tract in the construction of subsequent complex neuronal circuits that trigger coordinated behavior.
    • References:
      PLoS Biol. 2008 Jun 10;6(6):e142. (PMID: 18547144)
      Genes Dev. 1990 Dec;4(12A):2169-87. (PMID: 2176636)
      Brain Behav Evol. 2000 Dec;56(6):300-9. (PMID: 11326135)
      Anat Embryol (Berl). 1990;182(4):347-62. (PMID: 2252221)
      Development. 1995 Dec;121(12):3923-33. (PMID: 8575293)
      J Anat. 2011 Aug;219(2):203-16. (PMID: 21599661)
      Acta Anat (Basel). 1953;18(1):65-73. (PMID: 13064973)
      Prog Brain Res. 1967;25:1-93. (PMID: 4866554)
      Trends Neurosci. 2003 Sep;26(9):469-76. (PMID: 12948657)
      J Cell Biol. 2003 Jul 21;162(2):269-79. (PMID: 12876276)
      Nature. 1989 Feb 2;337(6206):424-8. (PMID: 2644541)
      Ergeb Anat Entwicklungsgesch. 1969;41(3):3-87. (PMID: 5363604)
      J Neurosci. 1992 Feb;12(2):467-82. (PMID: 1371313)
      Neuron. 2002 Jan 17;33(2):205-17. (PMID: 11804569)
      J Neurosci. 2001 Apr 15;21(8):2749-58. (PMID: 11306627)
      Neurology. 2000 May 23;54(10):1985-93. (PMID: 10822441)
      Dev Biol. 1996 Jan 10;173(1):79-94. (PMID: 8575640)
      J Neurosci. 1989 Jan;9(1):25-37. (PMID: 2913206)
      Annu Rev Neurosci. 1998;21:445-77. (PMID: 9530503)
      Cell. 1999 Mar 19;96(6):785-94. (PMID: 10102267)
      J Comp Neurol. 2000 Mar 6;418(2):121-46. (PMID: 10701439)
      Science. 2002 Dec 6;298(5600):1959-64. (PMID: 12471249)
      Neuron. 2002 Jan 17;33(2):219-32. (PMID: 11804570)
      Dev Biol. 2008 Jan 1;313(1):371-83. (PMID: 18061159)
      J Neurosci. 1990 Jun;10(6):1892-905. (PMID: 2355256)
      J Hirnforsch. 1999;39(3):369-74. (PMID: 10536869)
      Mech Dev. 2010 Jan-Feb;127(1-2):36-48. (PMID: 19961927)
      Neuroscience. 1989;32(1):113-26. (PMID: 2586744)
      J Neurosci. 1993 Jan;13(1):285-99. (PMID: 8423474)
      Development. 2005 Mar;132(6):1283-93. (PMID: 15716341)
      Clin Exp Pharmacol Physiol. 1999 Sep;26(9):752-4. (PMID: 10499168)
      J Comp Neurol. 2004 Aug 23;476(3):240-53. (PMID: 15269968)
      Development. 2005 Aug;132(16):3643-56. (PMID: 16033800)
      J Neurosci. 2007 Mar 28;27(13):3395-407. (PMID: 17392456)
      Dev Biol. 2007 Aug 15;308(2):606-20. (PMID: 17560975)
      Brain Res. 1987 Oct 6;422(2):389-97. (PMID: 2445443)
      Cell. 1994 Aug 12;78(3):425-35. (PMID: 8062385)
      Development. 2008 Nov;135(22):3643-53. (PMID: 18842816)
      Development. 1989 Nov;107(3):553-73. (PMID: 2612377)
      J Neurosci. 2014 Jan 8;34(2):608-21. (PMID: 24403159)
      Dev Dyn. 2001 Jun;221(2):216-30. (PMID: 11376489)
      Development. 1993 Jan;117(1):105-17. (PMID: 7900983)
      Genes Brain Behav. 2009 Jul;8(5):500-11. (PMID: 19496826)
      Nature. 1993 Jun 17;363(6430):630-4. (PMID: 8510755)
      Brain Res Bull. 2008 Jan 31;75(1):42-52. (PMID: 18158094)
      Development. 1992 Apr;114(4):825-31. (PMID: 1618146)
      Front Neuroanat. 2014 Jun 24;8:49. (PMID: 25009468)
      J Neurosci. 2003 Sep 3;23(22):8176-84. (PMID: 12954881)
      Development. 2012 Sep;139(18):3326-31. (PMID: 22912413)
      J Neurosci. 2012 Sep 5;32(36):12589-602. (PMID: 22956848)
      Dev Dyn. 2001 Oct;222(2):301-7. (PMID: 11668607)
      Development. 1999 May;126(9):1859-68. (PMID: 10101120)
      J Neurosci Res. 2011 Oct;89(10):1531-41. (PMID: 21688288)
      Environ Sci Pollut Res Int. 2011 Aug;19(7):2488-97. (PMID: 22828879)
    • الموضوع:
      Date Created: 20151126 Date Completed: 20151125 Latest Revision: 20220408
    • الموضوع:
      20250114
    • الرقم المعرف:
      PMC4657333
    • الرقم المعرف:
      10.1186/s40851-015-0029-9
    • الرقم المعرف:
      26605073