Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Estimation of linkage disequilibrium in four US pig breeds.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Badke YM;Badke YM; Bates RO; Ernst CW; Schwab C; Steibel JP
  • المصدر:
    BMC genomics [BMC Genomics] 2012 Jan 17; Vol. 13, pp. 24. Date of Electronic Publication: 2012 Jan 17.
  • نوع النشر :
    Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: BioMed Central Country of Publication: England NLM ID: 100965258 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2164 (Electronic) Linking ISSN: 14712164 NLM ISO Abbreviation: BMC Genomics Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : BioMed Central, [2000-
    • الموضوع:
    • نبذة مختصرة :
      Background: The success of marker assisted selection depends on the amount of linkage disequilibrium (LD) across the genome. To implement marker assisted selection in the swine breeding industry, information about extent and degree of LD is essential. The objective of this study is to estimate LD in four US breeds of pigs (Duroc, Hampshire, Landrace, and Yorkshire) and subsequently calculate persistence of phase among them using a 60 k SNP panel. In addition, we report LD when using only a fraction of the available markers, to estimate persistence of LD over distance.
      Results: Average r2 between adjacent SNP across all chromosomes was 0.36 for Landrace, 0.39 for Yorkshire, 0.44 for Hampshire and 0.46 for Duroc. For markers 1 Mb apart, r2 ranged from 0.15 for Landrace to 0.20 for Hampshire. Reducing the marker panel to 10% of its original density, average r2 ranged between 0.20 for Landrace to 0.25 for Duroc. We also estimated persistence of phase as a measure of prediction reliability of markers in one breed by those in another and found that markers less than 10 kb apart could be predicted with a maximal accuracy of 0.92 for Landrace with Yorkshire.
      Conclusions: Our estimates of LD, although in good agreement with previous reports, are more comprehensive and based on a larger panel of markers. Our estimates also confirmed earlier findings reporting higher LD in pigs than in American Holstein cattle, especially at increasing marker distances (> 1 Mb). High average LD (r2 > 0.4) between adjacent SNP found in this study is an important precursor for the implementation of marker assisted selection within a livestock species.Results of this study are relevant to the US purebred pig industry and critical for the design of programs of whole genome marker assisted evaluation and selection. In addition, results indicate that a more cost efficient implementation of marker assisted selection using low density panels with genotype imputation, would be feasible for these breeds.
    • References:
      BMC Genet. 2009 Apr 24;10:19. (PMID: 19393054)
      J Anim Sci. 2011 Mar;89(3):609-14. (PMID: 21036932)
      J Anim Sci. 2010 May;88(5):1610-8. (PMID: 20190174)
      J Anim Breed Genet. 2007 Dec;124(6):323-30. (PMID: 18076469)
      PLoS One. 2009;4(4):e5350. (PMID: 19390634)
      Anim Genet. 2006 Jun;37(3):225-31. (PMID: 16734681)
      Nat Genet. 2006 Nov;38(11):1251-60. (PMID: 17057719)
      Genet Sel Evol. 2009 Jan 15;41:12. (PMID: 19284703)
      Genetics. 2004 Mar;166(3):1395-404. (PMID: 15082558)
      Genet Sel Evol. 2010 Oct 16;42:37. (PMID: 20950478)
      Anim Genet. 2010 Dec;41 Suppl 2:8-15. (PMID: 21070270)
      J Dairy Sci. 2010 May;93(5):2229-38. (PMID: 20412938)
      PLoS One. 2009 Aug 05;4(8):e6524. (PMID: 19654876)
      Anim Genet. 2012 Feb;43(1):72-80. (PMID: 22221027)
      J Dairy Sci. 2009 Feb;92(2):433-43. (PMID: 19164653)
      J Dairy Sci. 2010 Nov;93(11):5423-35. (PMID: 20965358)
      Genetics. 2008 May;179(1):569-79. (PMID: 18493072)
      Theor Popul Biol. 2001 Nov;60(3):227-37. (PMID: 11855957)
      Genomics. 1995 Sep 20;29(2):311-22. (PMID: 8666377)
      Trends Genet. 2002 Feb;18(2):83-90. (PMID: 11818140)
      Genetics. 2008 Jul;179(3):1503-12. (PMID: 18622038)
      Int J Biol Sci. 2007 Feb 10;3(3):166-78. (PMID: 17384735)
      Genome Res. 2009 Mar;19(3):510-9. (PMID: 19088305)
      Am J Hum Genet. 2009 Feb;84(2):210-23. (PMID: 19200528)
      J Dairy Sci. 2008 May;91(5):2106-17. (PMID: 18420642)
      J Dairy Sci. 2009 Jan;92(1):16-24. (PMID: 19109259)
      Am J Hum Genet. 2006 Mar;78(3):437-50. (PMID: 16465620)
      Am J Hum Genet. 2008 Dec;83(6):737-43. (PMID: 19012875)
      Genetics. 2001 Apr;157(4):1819-29. (PMID: 11290733)
      Genetics. 2009 Dec;183(4):1545-53. (PMID: 19822733)
      J Dairy Sci. 2011 Jul;94(7):3679-86. (PMID: 21700057)
      Genet Sel Evol. 2011 Jan 21;43:5. (PMID: 21255418)
      Genetica. 2009 Jun;136(2):245-57. (PMID: 18704696)
      Nature. 2001 May 10;411(6834):199-204. (PMID: 11346797)
      Am J Hum Genet. 2009 Feb;84(2):235-50. (PMID: 19215730)
      Genome Res. 2007 Apr;17(4):520-6. (PMID: 17351134)
    • الموضوع:
      Date Created: 20120119 Date Completed: 20120523 Latest Revision: 20211021
    • الموضوع:
      20240829
    • الرقم المعرف:
      PMC3269977
    • الرقم المعرف:
      10.1186/1471-2164-13-24
    • الرقم المعرف:
      22252454