Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Frustration on the way to crystallization in glass.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      Some liquids do not crystallize below the melting point, but instead enter into a supercooled state and on cooling eventually become a glass at the glass-transition temperature. During this process, the liquid dynamics not only drastically slow down, but also become progressively more heterogeneous. The relationship between the kinetic slowing down and growing dynamic heterogeneity is a key problem of the liquid–glass transition. Here, we study this problem by using a liquid model, with a crystalline ground state, for which we can systematically control frustration against crystallization. We found that slow regions having a high degree of crystalline order emerge below the melting point, and their characteristic size and lifetime increase steeply on cooling. These crystalline regions lead to dynamic heterogeneity, suggesting a connection to the complex free-energy landscape and the resulting slow dynamics. These findings point towards an intrinsic link between the glass transition and crystallization. [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of Nature Physics is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)