Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Early incorporation of obscurin into nascent sarcomeres: implication for myofibril assembly during cardiac myogenesis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Borisov AB;Borisov AB; Martynova MG; Russell MW
  • المصدر:
    Histochemistry and cell biology [Histochem Cell Biol] 2008 Apr; Vol. 129 (4), pp. 463-78. Date of Electronic Publication: 2008 Jan 25.
  • نوع النشر :
    Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: Springer Country of Publication: Germany NLM ID: 9506663 Publication Model: Print-Electronic Cited Medium: Print ISSN: 0948-6143 (Print) Linking ISSN: 09486143 NLM ISO Abbreviation: Histochem Cell Biol Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: Berlin : Springer,
    • الموضوع:
    • نبذة مختصرة :
      Obscurin is a recently identified giant multidomain muscle protein whose functions remain poorly understood. The goal of this study was to investigate the process of assembly of obscurin into nascent sarcomeres during the transition from non-striated myofibril precursors to striated structure of differentiating myofibrils in cell cultures of neonatal rat cardiac myocytes. Double immunofluorescent labeling and high resolution confocal microscopy demonstrated intense incorporation of obscurin in the areas of transition from non-striated to striated regions on the tips of developing myofibrils and at the sites of lateral fusion of nascent sarcomere bundles. We found that obscurin rapidly and precisely accumulated in the middle of the A-band regions of the terminal newly assembled half-sarcomeres in the zones of transition from the continuous, non-striated pattern of sarcomeric alpha-actinin distribution to cross-striated structure of laterally expanding nascent Z-discs. The striated pattern of obscurin typically ended at these points. This occurred before the assembly of morphologically differentiated terminal Z-discs of the assembling sarcomeres on the tips of growing myofibrils. The presence of obscurin in the areas of the terminal Z-discs of each new sarcomere was detected at the same time or shortly after complete assembly of sarcomeric structure. Many non-striated fibers with very low concentration of obscurin were already immunopositive for sarcomeric actin and myosin. This suggests that obscurin may serve for organization and alignment of myofilaments into the striated pattern. The comparison of obscurin and titin localization in these areas showed that obscurin assembly into the A-bands occurred soon after or concomitantly with incorporation of titin. Electron microscopy of growing myofibrils demonstrated intense formation and integration of myosin filaments into the "open" half-assembled sarcomeres in the areas of the terminal Z-I structures and at the lateral surfaces of newly formed, terminally located nascent sarcomeres. This process progressed before the assembly of the second-formed, terminal Z-discs of new sarcomeres and before the development of ultrastructurally detectable mature M-lines that define the completion of myofibril assembly, which supports the data of immunocytochemical study. Abundant non-aligned sarcomeres in immature myofibrils located on the growing tips were spatially separated and underwent the transition to the registered, aligned pattern. The sarcoplasmic reticulum, the organelle known to interact with obscurin, assembled around each new sarcomere. These results suggest that obscurin is directly involved in the proper positioning and alignment of myofilaments within nascent sarcomeres and in the establishment of the registered pattern of newly assembled myofibrils and the sarcoplasmic reticulum at advanced stages of myofibrillogenesis.
    • References:
      J Cell Biol. 2003 Jan 20;160(2):245-53. (PMID: 12527750)
      J Muscle Res Cell Motil. 2003;24(2-3):191-203. (PMID: 14609030)
      J Cell Biol. 1987 Dec;105(6 Pt 1):2795-801. (PMID: 3320056)
      Biochem Biophys Res Commun. 2007 Oct 19;362(2):281-7. (PMID: 17716621)
      Anat Rec. 2001 Oct 1;264(2):203-18. (PMID: 11590596)
      Acta Physiol Scand Suppl. 1991;599:71-80. (PMID: 1830999)
      Trends Cell Biol. 2005 Sep;15(9):477-85. (PMID: 16061384)
      J Biomech. 2000 Oct;33(10):1189-95. (PMID: 10899327)
      J Cell Sci. 2006 Oct 15;119(Pt 20):4322-31. (PMID: 17038546)
      Biochem Biophys Res Commun. 2003 Oct 24;310(3):910-8. (PMID: 14550291)
      J Muscle Res Cell Motil. 2005;26(6-8):375-9. (PMID: 16470337)
      Gene. 2002 Jan 9;282(1-2):237-46. (PMID: 11814696)
      J Muscle Res Cell Motil. 2005;26(6-8):381-8. (PMID: 16470336)
      Tsitologiia. 1989 Jun;31(6):642-6. (PMID: 2683270)
      Clin Chim Acta. 2007 Jan;375(1-2):1-9. (PMID: 16904093)
      Dev Dyn. 2003 May;227(1):35-47. (PMID: 12701097)
      J Muscle Res Cell Motil. 2005;26(6-8):343-54. (PMID: 16465476)
      Dev Biol. 2003 May 15;257(2):382-94. (PMID: 12729566)
      Histochem Cell Biol. 2006 Mar;125(3):227-38. (PMID: 16205939)
      Tsitologiia. 1989 Oct;31(10):1234-7. (PMID: 2694547)
      Mol Biol Cell. 2003 Mar;14(3):1138-48. (PMID: 12631729)
      Nat Rev Mol Cell Biol. 2003 Sep;4(9):679-89. (PMID: 14506471)
      FASEB J. 2006 Oct;20(12):2102-11. (PMID: 17012262)
      J Cell Sci. 1999 May;112 ( Pt 10):1529-39. (PMID: 10212147)
      Circ Res. 1981 Apr;48(4):561-8. (PMID: 7460225)
      Cell. 2003 Jan 24;112(2):147-50. (PMID: 12553903)
      J Struct Biol. 1998;122(1-2):188-96. (PMID: 9724620)
      J Cell Biol. 2006 May 22;173(4):559-70. (PMID: 16702235)
      J Cell Sci. 2000 Nov;113 Pt 21:3851-9. (PMID: 11034912)
      J Muscle Res Cell Motil. 2005;26(6-8):427-34. (PMID: 16625316)
      Mol Membr Biol. 2005 Sep-Oct;22(5):421-32. (PMID: 16308276)
      Tsitologiia. 1985 Sep;27(9):990-4. (PMID: 4060232)
      Circ Res. 2001 Nov 23;89(11):1065-72. (PMID: 11717165)
      Dev Dyn. 2004 Apr;229(4):745-55. (PMID: 15042698)
      Cell. 2004 Jan 23;116(2):167-79. (PMID: 14744429)
      Am J Physiol Cell Physiol. 2006 Feb;290(2):C626-37. (PMID: 16207790)
      J Cell Biol. 1984 Dec;99(6):2268-78. (PMID: 6438115)
      Exp Cell Res. 2006 Nov 1;312(18):3546-58. (PMID: 16962094)
      Trends Cell Biol. 1999 Oct;9(10):377-80. (PMID: 10481174)
      Circ Res. 2007 Feb 2;100(2):238-45. (PMID: 17170364)
      Dev Dyn. 2006 Aug;235(8):2018-29. (PMID: 16779859)
      Eur J Cell Biol. 1982 Apr;27(1):62-73. (PMID: 6211355)
      Cell Motil Cytoskeleton. 1994;28(1):1-24. (PMID: 8044846)
      J Cell Biol. 1990 Apr;110(4):1159-72. (PMID: 2108970)
      J Mol Biol. 2005 Jun 3;349(2):367-79. (PMID: 15890201)
      EMBO J. 2006 Aug 23;25(16):3843-55. (PMID: 16902413)
      Exerc Sport Sci Rev. 2006 Apr;34(2):50-3. (PMID: 16672800)
      J Cell Sci. 2003 Dec 1;116(Pt 23):4811-9. (PMID: 14600266)
      J Cell Sci. 1999 Nov;112 ( Pt 22):4101-12. (PMID: 10547369)
      J Histochem Cytochem. 2004 Sep;52(9):1117-27. (PMID: 15314079)
      Development. 2002 Apr;129(7):1705-14. (PMID: 11923206)
      Adv Protein Chem. 2005;71:89-119. (PMID: 16230110)
      J Cell Biol. 1982 Dec;95(3):763-70. (PMID: 6185504)
      Cell Struct Funct. 1997 Feb;22(1):83-93. (PMID: 9113394)
      Int Rev Cytol. 1977;51:186-273. (PMID: 338537)
      Trends Cell Biol. 2006 Jan;16(1):11-8. (PMID: 16337382)
      J Cell Biol. 2001 Jul 9;154(1):123-36. (PMID: 11448995)
    • Grant Information:
      R01 HL075093 United States HL NHLBI NIH HHS; R01 HL075093-01A1 United States HL NHLBI NIH HHS; R01 HL 075093-01 United States HL NHLBI NIH HHS
    • الرقم المعرف:
      0 (Guanine Nucleotide Exchange Factors)
      0 (Muscle Proteins)
      0 (Obscn protein, rat)
    • الموضوع:
      Date Created: 20080126 Date Completed: 20080728 Latest Revision: 20211020
    • الموضوع:
      20221213
    • الرقم المعرف:
      PMC2761667
    • الرقم المعرف:
      10.1007/s00418-008-0378-y
    • الرقم المعرف:
      18219491