Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Exploring the Promoter Generation and Prediction of Halomonas spp. Based on GAN and Multi-Model Fusion Methods.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      Promoters, as core elements in the regulation of gene expression, play a pivotal role in genetic engineering and synthetic biology. The accurate prediction and optimization of promoter strength are essential for advancing these fields. Here, we present the first promoter strength database tailored to Halomonas, an extremophilic microorganism, and propose a novel promoter design and prediction method based on generative adversarial networks (GANs) and multi-model fusion. The GAN model effectively learns the key features of Halomonas promoter sequences, such as the GC content and Moran's coefficients, to generate biologically plausible promoter sequences. To enhance prediction accuracy, we developed a multi-model fusion framework integrating deep learning and machine learning approaches. Deep learning models, incorporating BiLSTM and CNN architectures, capture k-mer and PSSM features, whereas machine learning models utilize engineered string and non-string features to construct comprehensive feature matrices for the multidimensional analysis and prediction of promoter strength. Using the proposed framework, newly generated promoters via mutation were predicted, and their functional validity was experimentally confirmed. The integration of multiple models significantly reduced the experimental validation space through an intersection-based strategy, achieving a notable improvement in top quantile prediction accuracy, particularly within the top five quantiles. The robustness and applicability of this model were further validated on diverse datasets, including test sets and out-of-sample promoters. This study not only introduces an innovative approach for promoter design and prediction in Halomonas but also lays a foundation for advancing industrial biotechnology. Additionally, the proposed strategy of GAN-based generation coupled with multi-model prediction demonstrates versatility, offering a valuable reference for promoter design and strength prediction in other extremophiles. Our findings highlight the promising synergy between artificial intelligence and synthetic biology, underscoring their profound academic and practical implications. [ABSTRACT FROM AUTHOR]