Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Stepwise-targeting and hypoxia-responsive liposome AMVY@NPs carrying siYAP and verteporfin for glioblastoma therapy.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      Background: The Hippo pathway is a conserved tumour suppressor signalling pathway, and its dysregulation is often associated with abnormal cell growth and tumorigenesis. We previously revealed that the transcriptional coactivator Yes-associated protein (YAP), the key effector of the Hippo pathway, is a molecular target for glioblastoma (GBM), the most common malignant brain tumour. Inhibiting YAP with small interfering RNA (siYAP) or the specific inhibitor verteporfin (VP) can diminish GBM growth to a certain degree. Results: In this study, to enhance the anti-GBM effect of siYAP and VP, we designed stepwise-targeting and hypoxia-responsive liposomes (AMVY@NPs), which encapsulate hypoxia-responsive polymetronidazole-coated VP and DOTAP adsorbed siYAP, with angiopep-2 (A2) modification on the surface. AMVY@NPs exhibited excellent blood‒brain barrier crossing, GBM targeting, and hypoxia-responsive and efficient siYAP and VP release properties. By inhibiting the expression and function of YAP, AMVY@NPs synergistically inhibited both the growth and stemness of GBM in vitro. Moreover, AMVY@NPs strongly inhibited the growth of orthotopic U87 xenografts and improved the survival of tumour-bearing mice without adverse effects. Conclusion: Specific targeting of YAP with stepwise-targeting and hypoxia-responsive liposome AMVY@NPs carrying siYAP and VP efficiently inhibited GBM progression. This study provides a valuable drug delivery platform and creative insights for molecular targeted treatment of GBM in the future. [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of Journal of Nanobiotechnology is the property of BioMed Central and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)