Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Robust memory control design for semi-Markovian jump systems with cyber attacks.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      This paper addressed the problem of observer-based memory state feedback control design for semi-Markovian jump systems subject to input delays and external disturbances, where the measurement output was vulnerable to randomly occurring cyber attacks. To facilitate analysis, the cyber attacks were described by a nonlinear function that meets Lipschitz continuity and the possible attack scenarios were represented by a stochastic parameter that follows the Bernoulli distribution. Based on the information from the considered system and state observer, an augmented closed loop system was constructed. Then, by using the Lyapunov stability theory, an extended Wirtinger's integral inequality and stochastic analysis, the required stability criterion was proposed in the form of linear matrix inequalities. As a result, the control and observer gain matrices were efficiently derived, ensuring the stochastic stability of closed-loop systems with H ∞ performance, regardless of cyber attacks. To demonstrate the effectiveness and theoretical value of the proposed robust memory state feedback control design, simulation results were presented. [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of Electronic Research Archive is the property of American Institute of Mathematical Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)