Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

An automated multi-layer perceptron discriminative neural network based on Bayesian optimization achieves high-precision one-source single-snapshot direction-of-arrival estimation.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      This paper proposes an innovative global solution which is a pioneering work applying automated machine learning algorithms to remarkable precision sparse underwater direction-of-arrival (DOA) estimation that views the subaquatic sparse-sampling DOA estimation problem as a classification prediction task. The proposed solution, termed automated multi-layer perceptron discriminative neural network (AutoMPDNN), is built upon a Bayesian optimization framework. AutoMPDNN transforms sparsely sampled time-domain signals into the complex domain, preserving essential components in a one-source single-snapshot scenario. Leveraging Bayesian optimization principles, the algorithm embeds necessary hyperparameters into the loss function, effectively defining it as a maximum likelihood problem using the upper confidence bound function and incorporating sparse signal features. We also explore the model space architecture and introduce variants of AutoMPDNN, denoted as AutoMPDNNs_ln (n = 2,3,4). Through a series of plane wave simulation experiments, it is demonstrated that AutoMPDNN achieves the highest prediction performance for one-source single-snapshot scenarios compared to classical DOA estimation algorithms that incorporate sparse representation approaches, as well as contemporary deep learning DOA methods under varying conditions. [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of Scientific Reports is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)