Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Accelerating science: The usage of commercial clouds in ATLAS Distributed Computing.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: Barreiro Megino, Fernando; Borodin, Mikhail; De, Kaushik; Elmsheuser, Johannes; Di Girolamo, Alessandro; Hartmann, Nikolai; Heinrich, Lukas; Klimentov, Alexei; Lassnig, Mario; Lin, FaHui; Maeno, Tadashi; Marshall, Zachary; Merino, Gonzalo; Nilsson, Paul; Sandesara, Jay; Serfon, Cedric; South, David; Singh, Harinder
- المصدر:
EPJ Web of Conferences; 5/6/2024, Vol. 295, p1-8, 8p
- الموضوع:
- معلومة اضافية
- الموضوع:
- نبذة مختصرة :
The ATLAS experiment at CERN is one of the largest scientific machines built to date and will have ever growing computing needs as the Large Hadron Collider collects an increasingly larger volume of data over the next 20 years. ATLAS is conducting R&D projects on Amazon Web Services and Google Cloud as complementary resources for distributed computing, focusing on some of the key features of commercial clouds: lightweight operation, elasticity and availability of multiple chip architectures. The proof of concept phases have concluded with the cloud-native, vendoragnostic integration with the experiment's data and workload management frameworks. Google Cloud has been used to evaluate elastic batch computing, ramping up ephemeral clusters of up to O(100k) cores to process tasks requiring quick turnaround. Amazon Web Services has been exploited for the successful physics validation of the Athena simulation software on ARM processors. We have also set up an interactive facility for physics analysis allowing endusers to spin up private, on-demand clusters for parallel computing with up to 4 000 cores, or run GPU enabled notebooks and jobs for machine learning applications. The success of the proof of concept phases has led to the extension of the Google Cloud project, where ATLAS will study the total cost of ownership of a production cloud site during 15 months with 10k cores on average, fully integrated with distributed grid computing resources and continue the R&D projects. [ABSTRACT FROM AUTHOR]
- نبذة مختصرة :
Copyright of EPJ Web of Conferences is the property of EDP Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.