Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Applying the Hollomon-Jaffe parameter to predict changes in mechanical properties of irradiated austenitic chromium-nickel steels during isothermal exposure.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      The Hollomon-Jaffe parameter is widely used in metallurgy and materials science to characterize the behavior and predict the various metals' physical-mechanical properties under different temperature and time modes. The possibility of predicting changes in the mechanical properties of structural steels due to thermal influences has been studied. The paper presents the results of a study of the mechanical properties of the materials of the core components of the BN-350 reactor facility (RF) made of austenite chromium-nickel steel 12Cr18Ni10Ti (a spent fuel assembly's jacket) and 09Cr16Ni15M3Nb (an intro-channel displacer). The samples were studied both before and after radiation annealing. Annealing of steel samples at 550 °C reduced the yield strength and significantly restored the plasticity and ability of the material to strain hardening. The efficiency of post-radiation annealing of the materials increases with annealing temperature and leads to a transition to the reduction process. It was established that medium of high temperature annealing during heat treatment does not lead to significant changes in the mechanical properties of irradiated materials. The microstructure studied using a scanning electron microscope reasonably correlates with the results of mechanical tests. The possibility of using the Hollomon-Jaffe parameter to predict the properties of austenite chromium-nickel steel, which received damaging doses in the range from 12 to 59 dpa, was shown for the first time. Thus, for the first time, the unique coefficient (C) of the Holloman-Jaffe parameter for irradiated materials of chromium-nickel steel was experimentally determined, and dependencies characterizing the change in hardness of chromium-nickel steel on temperature and duration of post-radiation thermal exposure were established. [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of AIMS Materials Science is the property of American Institute of Mathematical Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)