Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Three-Step Process for Efficient Solar Cells with Boron-Doped Passivated Contacts.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      Crystalline silicon (c-Si) solar cells with passivation stacks consisting of a polycrystalline silicon (poly-Si) layer and a thin interfacial silicon dioxide (SiO2) layer show high conversion efficiencies. Since the poly-Si layer in this structure acts as a carrier transport layer, high doping of the poly-Si layer is crucial for high conductivity and the efficient transport of charge carriers from the bulk to a metal contact. In this respect, conventional furnace-based high-temperature doping methods are limited by the solid solubility of the dopants in silicon. This limitation particularly affects p-type doping using boron. Previously, we showed that laser activation overcomes this limitation by melting the poly-Si layer, resulting in an active concentration beyond the solubility limit after crystallization. High electrically active boron concentrations ensure low contact resistivity at the (contact) metal/semiconductor interface and allow for the maskless patterning of the poly-Si layer by providing an etch-stop layer in an alkaline solution. However, the high doping concentration degrades during long high-temperature annealing steps. Here, we performed a test of the stability of such a high doping concentration under thermal stress. The active boron concentration shows only a minor reduction during SiNx:H deposition at a moderate temperature and a fast-firing step at a high temperature and with a short exposure time. However, for an annealing time t anneal = 30 min and an annealing temperature 600 °C ≤ T anneal ≤ 1000 °C, the high conductivity is significantly reduced, whereas a high passivation quality requires annealing in this range. We resolve this dilemma by introducing a second, healing laser reactivation step, which re-establishes the original high conductivity of the boron-doped poly-Si and does not degrade the passivation. After a thermal annealing temperature T anneal = 985 °C, the reactivated layers show high sheet conductance (Gsh) with Gsh = 24 mS sq and high passivation quality, with the implied open-circuit voltage (iVOC) reaching iVOC = 715 mV. Therefore, our novel three-step process consisting of laser activation, thermal annealing, and laser reactivation/healing is suitable for fabricating highly efficient solar cells with p++-poly-Si/SiO2 contact passivation layers. [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of Energies (19961073) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)