Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Al-modified yolk-shell silica particle-supported NiMo catalysts for ultradeep hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene: Efficient accessibility of active sites and suitable acidity.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      Yolk-shell SiO2 particles (YP) with center-radial meso-channels were fabricated through a simple and effective method. Al-containing YP-supported NiMo catalysts with different Al amounts (NiMo/AYP-x, x = Si/Al molar proportion) were prepared and dibenzothiophene (DBT) and 4,6-dimethyl-dibenzothiophene (4,6-DMDBT) were employed as the probes to evaluate the hydrodesulfurization (HDS) catalytic performance. The as-prepared AYP-x carriers and corresponding catalysts were characterized by some advanced characterizations to obtain deeper correlations between physicochemical properties and the HDS performance. The average pore sizes of series AYP-x supports are above 6.0 nm, which favors the mass transfer of organic sulfides. The cavity between the yolk and the shell is beneficial for the enrichment of S-containing compounds and the accessibility between reactants and active metals. Aluminum embedded into the silica framework could facilitate the formation of Lewis (L) and Brønsted (B) acid sites and adjust the metal-support interaction (MSI). Among all the as-synthesized catalysts, NiMo/AYP-20 catalyst shows the highest HDS activities. The improved HDS activity of NiMo/AYP-20 catalyst is attributed to the perfect combination of excellent structural properties of the yolk-shell mesoporous silica, enhanced acidity, moderate MSI, and good accessibility/dispersion of active components. [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of Petroleum Science (KeAi Communications Co.) is the property of KeAi Communications Co. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)