Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Elimination of heart sound from respiratory sound using adaptive variational mode decomposition for pulmonary diseases diagnosis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      Lung sound (LS) signals are a vital source of information for the identification of pulmonary disorders. Heart sound (HS) is the most common contaminant of lung sounds during auscultation from the chest walls. This directly affects the efficiency of lung sound processing in diagnosing lung diseases. In this work, Adaptive Variational Mode Decomposition (AVMD) technique is proposed to remove heart sound contaminants from lung sounds. The proposed AVMD method initially breakdown the noisy lung sound signal into a collective of bandlimited modes called variational mode functions (VMF). Then, based on the frequency spectrum, the HS is filtered out from the LS. The real time lung sound data is collected from 95 participants and the performance of VMD technique is evaluated using the statistical metrics measures. Thus, the proposed topology exhibits Higher SNR (29.6587dB, lowest Root Mean Square (RMSE) of 0.0102, lowest normalized Mean Absolute Error (nMAE) of 0.0336, and highest percentage in correlation coefficient Factor (CCF) of 99.79% respectively. These experimental results are found to be superior and outperform all other recently proposed techniques. [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of Journal of Intelligent & Fuzzy Systems is the property of IOS Press and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)