Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Integrated Generative Adversarial Networks and Deep Convolutional Neural Networks for Image Data Classification: A Case Study for COVID-19.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      Convolutional Neural Networks (CNNs) have garnered significant utilisation within automated image classification systems. CNNs possess the ability to leverage the spatial and temporal correlations inherent in a dataset. This study delves into the use of cutting-edge deep learning for precise image data classification, focusing on overcoming the difficulties brought on by the COVID-19 pandemic. In order to improve the accuracy and robustness of COVID-19 image classification, the study introduces a novel methodology that combines the strength of Deep Convolutional Neural Networks (DCNNs) and Generative Adversarial Networks (GANs). This proposed study helps to mitigate the lack of labelled coronavirus (COVID-19) images, which has been a standard limitation in related research, and improves the model's ability to distinguish between COVID-19-related patterns and healthy lung images. The study uses a thorough case study and uses a sizable dataset of chest X-ray images covering COVID-19 cases, other respiratory conditions, and healthy lung conditions. The integrated model outperforms conventional DCNN-based techniques in terms of classification accuracy after being trained on this dataset. To address the issues of an unbalanced dataset, GAN will produce synthetic pictures and extract deep features from every image. A thorough understanding of the model's performance in real-world scenarios is also provided by the study's meticulous evaluation of the model's performance using a variety of metrics, including accuracy, precision, recall, and F1-score. [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of Information (2078-2489) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)