Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Variable selection for high‐dimensional generalized linear model with block‐missing data.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      In modern scientific research, multiblock missing data emerges with synthesizing information across multiple studies. However, existing imputation methods for handling block‐wise missing data either focus on the single‐block missing pattern or heavily rely on the model structure. In this study, we propose a single regression‐based imputation algorithm for multiblock missing data. First, we conduct a sparse precision matrix estimation based on the structure of block‐wise missing data. Second, we impute the missing blocks with their means conditional on the observed blocks. Theoretical results about variable selection and estimation consistency are established in the context of a generalized linear model. Moreover, simulation studies show that compared with existing methods, the proposed imputation procedure is robust to various missing mechanisms because of the good properties of regression imputation. An application to Alzheimer's Disease Neuroimaging Initiative data also confirms the superiority of our proposed method. [ABSTRACT FROM AUTHOR]
    • نبذة مختصرة :
      Copyright of Scandinavian Journal of Statistics is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)